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 

Abstract—this paper is the companion-paper of another paper 

presented in FUSION’17 concerning bearings-only target motion 

analysis (BOTMA). In this one, bearing data are replaced by 

range data: we study observability in range-only target motion 

analysis (ROTMA). When the observer is in constant turn 

motion, the target’s trajectory is observable, as in BOTMA. If the 

observer is in constant acceleration motion, necessary and 

sufficient conditions of observability in ROTMA are proven to be 

not the same than in BOTMA, although the equality of the ranks 

of the respective Fisher information matrices. As in BOTMA, the 

rendezvous routes of the observer and the target play a crucial 

role. When the system is not observable, ghost-targets (the ones 

at the same range than the true target) are identified. 

 
Index Terms— Target motion analysis, tracking, range-only, 

observability, constant turn motion, constant acceleration 

motion, sonar, radar, electronic support measurement. 

  

I. INTRODUCTION  

HIS PAPER addresses the observability analysis in range-

only target motion analysis (ROTMA) when the target is 

assumed to be in constant velocity (CV) motion whereas 

the observer maneuvers smoothly. It completes another one 

[5] in which we analyze observability in bearing-only target 

motion analysis in the same context. These both papers are the 

continuation of [2] where the trajectory of the observer is 

simpler. Here, we will prove that when the observer is in 

constant turn (CT) motion, the target is observable in 

ROTMA. This maneuver was previously used in ROTMA [3], 

[4]. When the observer is in constant acceleration (CA) 

motion, several situations can occur: the target can be 

observable or not. This proves the existence of ineffective 

maneuvers in ROTMA, as in BOTMA [1]. We propose a 

criterion of observability, based upon range measurements. 

When the trajectory of the target is not observable, the set of 

ghost-targets is given. 

 

The paper is organized as follows: 

In Section II, the problem formulation and notations are 

presented.  

 
 

 
 

 

In section III we recall the observer kinematic models and 

give condition on range of rendezvous route when the 

observer is in CA motion. 

In section IV, we prove observability of the target when the 

observer is in CT motion.  

Section V is devoted to observers in CA motion. For this type 

of scenario, the trajectory of the target is not necessarily 

observable. Therefore we give necessary and sufficient 

observability conditions. In unobservable cases, we identify 

the set of ghost-targets. Illustrative examples are given. 

The conclusion follows. 

 

II. PROBLEM FORMULATION AND NOTATIONS 

A. Definitions and notations 

In a plane given Cartesian system, a target (T) moves in CV 

motion and an observer (O) maneuvers smoothly. The 

scenario starts at time 0t  and finishes at time 
fTt  . At time 

t the position   T)]()([ tytxtP OOO   and velocity 

 
  T)]()([ tytx

dt

tdP
tV OO

O

O
  of the observer are 

concatenated into the vector  

      TtytxtytxtX OOOOO
)()( . 

 

For the target, at time t the position   T)]()([ tytxtP TTT  , and 

velocity   T][ TT
T

T yx
dt

tdP
V  verify     TTT VtPtP  0  and are 

concatened into    TTTTTT yxtytxtX )()( .  

 

The trajectory of the target relative to the observer is given by 

its relative position       T)]()([ tytxtPtPtP OTOTOTOT   and by 

its relative velocity  
  T)]()([ tytx

dt

tdP
tV OTOT

OT
OT

 . We 

define the vector  

          TtytxtytxtXtXtX OTOTOTOTOTOT
)()( .  

The vector  0OTX  that  entirely defines the target’s trajectory 

will be simply denoted as 
OTX subsequently. 

 

The relative position of the target can be expressed in polar 
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coordinate    
 

 








t

t
trtPOT





cos

sin , where  tr  and  t  are the 

range and the bearing at t, respectively. As well the initial 

relative velocity of the target is   









r

r
rOT

h

h
vV

cos

sin
0  . The 

polar coordinates of  0OTV  are then  rr hv , . 

 

B. What is observability ? 

The previous notation are extended in order to emphasize this 

dependence:  tr  will be denoted  OTXtr , . We recall that the 

target’s trajectory is declared observable in ROTMA if the 

following statement is true: 

      OTOTf XXXtrXtrTt  ,,,,0 . Otherwise, 

the trajectory is said to be unobservable: at least one vector 

 TOGOGOGOGOG yxyxX )0()0(
 
(defining a CV motion) 

different from 
OTX  exists such that    OTOG XtrXtr ,,  . 

The vector 
OOGG XXX   defines the “virtual” trajectory of 

a “ghost-target”, denoted G. Each “ghost-target” is defined by  

      T000 GGG yxP  , T][ GGG yxV  , 

    T)]()([0 tytxVtPtP GGGGG  , and 

   TGGGGG yxtytxtX )()( , with the convention 

 0GG XX  .  

 

Observability analysis has two aims: 

a) give a necessary and sufficient condition to have 

unicity of 
OTX  (the trajectory of the target is 

observable) and the way to know that from 

measurements, 

b) when the trajectory is unobservable, characterize the 

set of the ghost-targets, that is 
OGX . 

This will conduct our paper. 

 

Due to the length of the paper, some proofs given in [5] and 

[6] are omitted here. 

III. OBSERVER CINEMATIC MODELS 

Let us start our study by defining the two types of maneuvers 

considered here: the constant turn motion, that is the observer 

travels in an arc of a circle at constant speed, and the constant 

acceleration motion. We detail hereafter the equations of these 

two motions. 

A. CT motion 

The observer turns around a fixed point  TCCC yxP   at 

range 0 , with a constant turn rate 0  (positive if the 

motion of the observer is clockwise) and an “initial phase”   

relative to North, at 0t . Its speed is constant. As a 

consequence, at time t , the location of the observer is given 

by   
 
 

















t

t
PtP CO

cos

sin . Without loss of generality, 

we will assume that 0 CC yx . 

B. CA motion 

At any time t, the position of the observer is 

      
2

00
2t

VtPtP OOO
,  where  0OV  is the initial velocity 

and  Tyx  is the (non-zero) acceleration vector. The 

relative position of the target with respect to the observer is 

      
2

00
2t

VtPtP OTOTOT
   (1) 

Without loss of generality (and in order to simplify the 

coming computations), we will assume that 0x  and 

0y . Indeed, a suitable rotation of the entire scenario 

allows us to be in this case.  

 

When the target is in CA motion, analyzing observability 

conducts us to consider special scenarios: the rendezvous 

routes whose definition is now given 

The target and the observer are said to be on a rendezvous 

route (RDVR), when they are collocated at a time 
ct .  

From now, we will assume that 
ct  is not in  fT,0 .  

 

Proposition 1: General properties of RDVR 

If O ( in CA motion) and T are on an RDVR, then 

- either  0OTP ,  0OTV  and   are collinear, 

- or   0OTP  and   are noncollinear, and  0OTV  and   are 

noncollinear. 

See [5], for the proof. 

 

Definition: The two types of RDVR 

The RDVRs are called rendezvous routes of type I (RDVR-I), 

when  0OTP ,  0OTV , and   are collinear. When  0OTP  and 

  are noncollinear, and  0OTV  and   are noncollinear as 

well, the RDVRs are called rendezvous routes of type II 

(RDVR-II). 

 

Note that for the RDVR-II,  0OTP  and  0OTV  can be 

collinear. 

The following three propositions give sufficient and necessary 

conditions of the two types of RDVD. 

 

Proposition 2: Condition of RDVR-I 

Assume that  0OTP ,  0OTV  and   are collinear; that is, 

  0OTP  (with 0 ) and    0OTV . O and T are on an 

RDVR if and only if   22  . 

See [5], for the proof. 

 

Proposition 3: Condition of RDVR-II. 

Assume that  0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear as well. 

O and T are on an RDVR if and only if 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

See [5], for the proof. 

 

Proposition 4: Criterion on range of RDVR-I 

The target and the observer are on RDVR-I if and only if a 
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scalar r  exist such that, for  fTt ,0 , either 

rtrttr x
 0

2

2

1
)(   or rtrttr x

 0

2

2

1
)(    and 

.2 0

2

xrr   

The proof is given in [6]. 

 

 

IV. OBSERVABILITY WHEN OBSERVER IS IN CT MOTION  

 

The following result is established when the noise-free range 

are continuously available during  fTt ,0  

 

Proposition 5: Observability when observer is in CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable by range 

measurements only. 

Proof: 

Suppose now that another target G moving with a constant 

velocity, say 
GV , is at the same range as the target of interest 

T. The square of the range at any time t  is 

                     22222 tytytxtxtytytxtxtr OGOGOTOT 

 
  

         

         
.

cos0sin0

cos0sin0

22

22

t

tytytxtx

tytytxtx

GGGG

TTTT















 

or, equivalently,  

          

        
    

          

        
     .,cossin2

cos0sin02

00200

cossin2

cos0sin02

00200

222222

222222

ttytxt

tytx

yyxxtyxtyx

tytxt

tytx

yyxxtyxtyx

GG

GG

GGGGGGGG

TT

TT

TTTTTTTT

































 

This implies the following five equalities: 

       

       

       

       

   

   
































.cossin

cossin

cos0sin0

cos0sin0

0000

0000

2222

2222









tytx

tytx

tytx

tytx

yyxxyyxx

yxyx

yxyx

t

TT

GG

TT

GG

TTTTGGGG

TTGG

TTGG









 
The last two equations are equivalent to 

 
 

     tPP
t

t
TG 












000

cos

sin
T



  and 

 
 

  tVV
t

t
TG 












0

cos

sin
T



 . Since  
 















t

t

cos

sin  spans 

the whole two-dimensional space,    00 TG PP   and 
TG VV  . 

QED. 

 

More generally, if the observer’s trajectory contains at least one 

arc of a circle, then the trajectory of any target having a constant 

velocity is observable in ROTMA, as in BOTMA [6]. 

V. OBSERVABILITY WHEN OBSERVER IS IN CA MOTION 

 

In a first time we propose a necessary and sufficient 

observability condition. In a second time we propose to define 

the set of ‘ghost targets’ when de trajectory of the target is not 

observable.  

 

A. Necessary and sufficient observability condition 

 

The following analysis will be conducted for the relative 

motion with respect to the observer’s trajectory. The question 

is to identify vectors  TyxyxX   such that  

  ttP
t

yty

xtx
OT 












,

2

2



       (1) 

 

We can already identify two solutions: 

        T0000 OTOTOTOTOT yxyxX  , and 

        T0000 OTOTOTOT

S

OG yxyxX    (since 0y ). 

 

We will show below that most of the time, other ghost-targets 

can exist. 

 

Lemma 3 

The set of solutions   T
yxyx   of (1) is defined by the 

following equations:  

   

       

     

  )5(0

)4(000

)3(0000

)2(00

2222

2222

xOTx

xOTOTOTx

OTOTOTOT

OTOT

xx

xyxxyx

yyxxyyxx

yxyx



















 

or equivalently by 

 

)9(sin

)8(sincos

)7(cos

)6(

00

2222

00

2

0

22

rxrx

xrrx

rr

hvx

rhvxyx

hvryyxx

ryx



















  

 

Note that (5) implies  0OTxx   . 

The next proposition gives us a guide to find all the solutions. 

 

Proposition 6 

The vectors 

         T0000 OTOTOTOTOT yxyxX   and 

        T0000 OTOTOTOT

S

OG yxyxX   are solution of (1). 

Any other solution  TyxyxXOG
  satisfies   

  02sin 2

00

2

0

2
2  rh

v
rx

v
x r

x

r

x

r 


 and  0OTxx   . 

 
Proof: We exploit here the four equations of Lemma 3. In 

order to render the proof lighter, we introduce the following 
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notations: 
2

0ra ,   rr hvrb  00 cos  , and 
00

2 sin  xr rvc  . 

From (5), we have  0OTxx   . Reporting this first result in 

(8), we get   .0 22 cxyx xOT    Then, multiplying both 

sides of this equation by 
2y , we get 

  222222 0 cyyxyyxy xOT   .           (10) 

 

Eq. (7) implies   222 0OTxxbyy   . Inserting this into (10), 

we get 

    22222 0 cyyxxxbxy xOT   .    (11) 

 

Finally, using Eq. (6), we replace 
2y  by 2xa   in (11), and 

we end up with the following equation: 

          22222 00 xacxaxxxbxxa xOTOT   .    (12) 

 

The cubic equation (12) has at most three real roots (one of 

them is  0OTx ).  Let us denote the three solutions as 

 2,1,0ixi
 (in some cases, only one or two roots exist). 

For convenience, the root  0OTx  will be denoted 
0x . 

 

To compute the two other roots, we first develop (12): 

        0cst0200 2223  xOTOTOTx axbxcxxxx    

   0cst0223  xOTx axbxcxx   .       (13) 

 

Since 
0x  is a root, we have 

    0cst020

2

0

3

0  xOTx axbxcxx   .              (14) 

The difference (13) – (14) is 

          0020

2

0

23

0

3  xOTx axbxxcxxxx   ,     

or, equivalently, 

 

          )15(00200

2

0

2

0  xOTx axbcxxxxxxxx  

 

Dividing (15) by  0xx  , we get 

        00200

2

0

2  xOTx axbcxxxxxx      (16), 

which is a quadratic equation. 

 

Rearranging the terms of (16), we end up with 

     0020

2

00

2  xOTxxx axbcxxcxxx    

or equivalently  

  0020
0

02 













 ax

bcx
x

cx
xx OT

xx

x

x

x 






 . 

 

Now, we replace the terms ,, ba , and c  by their respective 

values. The equation to be solved is hence  

  0sincos2sin 2

00

2

00

2

0

2
2  rhh

v
r

v
r

v
xx rr

x

r

x

r

x

r 





   0sincos2sin 2

000

2

0

2
2  rhh

v
r

v
xx rr

x

r

x

r 


  02sin 2

00

2

0

2
2  rh

v
r

v
xx r

x

r

x

r 


.  

QED 

 

This proposition tells us that the number of ghost is finite and 

the observability must be studied by means of the polynomial 

function   2

00

2 rSrxxxQ   , with 

x

rv




2

  and 

 rhS 2sin 0   . Note that   is negative. By convention, 

the heading 
rh  is zeroed when 0rv . 

Now, we are able to give a necessary and sufficient 

observability condition.  

 

Proposition 7: Observability criterion when observer is in CA 

motion 

Assuming that the observer is traveling with a constant 

acceleration vector, the trajectory of the target is observable 

from at least four range measurements acquired at different 

times if and only if O and T are on an RDVR-I. 

 

Proof: 

Firstly, suppose that the trajectory of the target is observable. 

Then, S

OGOT XX  , which implies     000  OTOT yy  , that is 

 0OTP ,  0OTV , and   are collinear; so   0OTP  and 

   0OTV . In terms of coordinates, this yields 

      00,0,0  OTxOTxOT yxx   , and   00 OTy . 

Hence  

x

OTx




02
 , 

   ,0sinsin 00000 OTxrrSr   and consequently 

 
 

 
 

 0
0

0
0 2

22
2

OT

x

OT
OT

x

OT x
x

xx
x

xxQ 


 . 

Formally, the roots of   0xQ  are  0OTxx   and 

 
 

x

OT
OT

x
xx



0
0

2
 . Since the trajectory of the target is 

observable, either    
 

x

OT
OTOT

x
xx



0
00

2
 , in other words, 

 0OTx  is a double root (this corresponds to 
2

2
  ), or 

 
 

x

OT
OT

x
x



0
0

2
  is an unacceptable physical solution; that 

is  
  2

0

2
2 0

0 r
x

x
x

OT
OT 













. Because  022

0 OTxr  , this 

inequality is equivalent to  22  . The target and the 

observer are on an RDVR-I from Proposition 2. 

 

Conversely, suppose that the target and the observer are on an 

RDVR-I; that is   0OTP  and    0OTV , and 

.22   We have  

          TT
000000 xxOTOTOTOT yxyx  . 

Under this assumption, the scalars a, b, and c (defined in the 
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proof of Proposition 6) take the following values: 

  22222 ,, xxx cba   . So, the set of equations 

(6), (7), and (9) becomes 

  )19(

)18(

)17(

22222

2

2222

xxx

xx

x

xy

yyx

yx















   

which is equivalent to  

 

  )22(

)21(

)20(

2

2222

xx

xx

x

xy

xyy

xy















  

 

Taking the square of (21), we obtain  22222 xyy xx   . 

 

Then using (20) and (22), we get  

    222222 xxx xxxxx   , which can be 

factorized into       222
xxx xxxx      

(23). 

If 
xx  , then (23) is equivalent to   xx x  2 , 

from which we derive   xx  2 . Reporting this result 

into (20), we have    22222

xy   ; that is, 

  2222 2 xy   . As a consequence,   02 22  . 

Let us consider the two following cases: (i) 0 . Then 

0  and 0y  ; we deduce from (17) that 
xx  . 

Reporting this value into (22), we get 22

xy  . We 

deduce that 0 . Hence 0 , which is incompatible with 

the fact that   0tr , for  Tt ,0 . (ii) 0 . Then 

02 2  , but by assumption, 02 2  . Hence 

02 2  . We have 0y . Now, from (21), we get 

xx  , which is impossible. From this discussion, we 

conclude that the case 
xx   must be rejected. 

Hence, 
xx   and consequently 0y  and 0y . The 

trajectory of the target is observable.  

 

QED. 

We face the apparent paradox encountered in [2]: the ranks of 

the FIM’s in ROTMA and in BOTMA are equal then less than 

3 since the bearings are constant [2]. The trajectory of the 

target is observable in ROTMA although the FIM is rank-

deficient.  

B. Unobservable case: construction of the set of ghosts 

We start with the following proposition: 

 

Proposition 8: Existence condition of only one ghost in 

ROTMA for a CA motion 

Assume that the observer is in CA motion. One unique ghost 

exists if and only if O and T are on an RDVR-II. Moreover, its 

trajectory is defined by S

OGX . 

 

Proof: 

First, assume that O and T are on an RDVR-II; that is, 

    0
2

1
00 2  xcOTcOT txtx   and     000  OTcOT yty  . 

 

Any ghost is also on an RDVR-II with the target. 

Consequently, we have  

0
2

1 2  xcc txtx   and 0 yty c
 . 

We deduce that    00 OTcOTc xtxxtx   . Since  0OTxx   , 

we conclude that  0OTxx  , and  0OTyy   and 

 0OTyy   . 

 

Conversely, assume now that one unique ghost exists. We 

recall that its trajectory is defined by  TyxyxX   and 

that  0OTxx   . 

First of all, let us prove that  0OTxx  . Indeed, if  0OTxx  , 

then 0 yy   (otherwise, another ghost exists whose 

trajectory is defined by  TyxyxX   , which is in 

contradiction with the unicity of the ghost). At this point, we 

necessarily have   T000 OTxxX  . Suppose that 

  00 OTy  or   00 OTy . Then, the vector 

        T0000 OTOTOTOT yxyx    defines the trajectory 

of a ghost. Since the ghost is unique, we have 

           TT
0000000 OTOTOTOTOT yxyxxxX   , 

which is a contradiction. Hence     000  OTOT yy  . To 

summarize, we have obtained     T0000 OTOTOT xxX  , 

and   T000 OTxxX  . Consequently,  0OTxx  , 

which is in contradiction with the assumption. Hence, 

 0OTxx  . Therefore,    00 OTxQ . Let us develop the 

expression of   0OTxQ  : 

       2

00

2 000 rSrxxxQ OTOTOT   , with 

x

rv




2

 and  

    .cossincos22sin2cossin2sin 0

22

00 rrrrr hhhhhS  

 

    

  rrrr

x

r

x

r
OTOT

hhhh
v

r

v
ryxQ

cossincos22sin2cossin

sin00

0

22

0

2

0

2

00

2










 

   

rr

x

r

rr

x

r
OT

hh
v

r

hh
v

ry

cossincos2

2sin2cos1sin0

0

2

0

22
2

00

2










 

  rr

x

r

x

r
rOT hh

v
r

v
hry cossincos22cossin20 0

2

0

2
2

00

2 


 

 

 
 

 
 

   00
0

20
0

20 22

OTOT

x

OT
OT

x

OT
OT yx

y
y

x
y 


  
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  
 
 

        0000
0

0
200

2 OTOTOTOT

OT

OT
xOT yxyx

y

y
xQ 


  . 

According to Proposition 3, the target and the observer are on 

an RDVR-II. 

 

QED. 

 

We plan now to identify all the ghosts; for that, we need a tool 

given by the following lemma. 

Lemma 4 

The equation 02

00

2  rSrxx   has two real roots 

defined by 
2

1





x  and 

2
2





x , with  

   22

0

2

0 142 SrSr   . Moreover, 

 
2010 xrxr  . 

 

Lemma 4 will conduct our study according to the following 

table: 

Table I: Values of  21, xx  

 
1x  

2x  

Case 1 01 rx   
02 rx   

Case 2 010 rxr   
02 rx   

Case 3 01 rx   
02 rx   

Case 4 01 rx   
02 rx   

Case 5 010 rxr   
02 rx   

Case 6 01 rx   
02 rx   

 

Recall that  21 xx  and   0021 rSrxx   . We 

deduce that Case 1 is the only case where 0rv . 

 

Case 1: 
01 rx   and 

02 rx   

If 
2

0


  , we end up with three ghosts, whose 

respective trajectories are defined by  

 























00

0

sin1

0

0

 xr

r

X
 and S

OGX . 

If 
2

0


  , we get two ghost-trajectories given by 

























xr

r

X

0

0

2

0

0 . 

The target is observable if and only if 
2

0


  .  

 

Case 2: 
010 rxr   and 

02 rx   

 

If 
2

0


  , then we have three ghosts:  

if 0sin rh , then  

 
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








, with 1 ;  

else  
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








 and S

OGX . 

If 
2

0


   we have two ghosts 

 




















0

0

0

0

OTx

r

X


 and 

S

OGX  . 

 

Case 3: 
021 rxx    

The target is observable if and only if 
2

0


  . 

Otherwise, two ghosts exist, defined by 

  T0000 OTxrX   and S

OGX . 

 

Case 4: 
01 rx   and 

02 rx   

The target is observable if and only if 
2

0


  . 

Otherwise, three ghosts exist: 

 

  

























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

Case 5: 
010 rxr   and 

02 rx   

The target is never observable. At most, three ghosts 

exist, given by 

 
   































2

1

2

0

100

2

1

2

0

1

0cos

0

xr

xxhvr

x

xr

x

X

OTrr

OT








, with 

 1,1  , and S

OGX .   

This case includes the scenarios where T and O are 

on an RDVR- II.  

 

Case 6: 
01 rx   and 

02 rx   

The target is observable if and only if 

2
0


 

2


 rh . Else three ghosts exist and their 
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trajectories are defined by 

 

  























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

The following Table II is consistent with Propositions 6, 7 and 

8. We have to emphasize upon the particularity of Case 1 and 

Case 2, when the number of ghosts is equal to 2: we gave as a 

condition that 
2

0


   for the target; but this condition has no 

reason to be satisfied for one ghost. We must hence extend 

this condition to the two ghosts by writing: for Cases 1 and 2, 

if the initial bearing of one ghost (or of the target) is equal to 

2

 , then two ghosts exist. 

Table II: Summarized results 

 

Necessary condition to have ghosts 

0  
(Observability 

case: RDVR-I) 

1 2 3 

Case 1 
2

0


   never 

2
0


   

2
0


   

Case 2 never never 
2

0


   

2
0


   

Case 3 
2

0


   never 

2
0


   never 

Case 4 
2

0


   never never 

2
0


   

Case 5 never RDVR-II never Not RDVR-II 

Case 6 
2

0


   never never 

2
0


   

 

C. Examples  

 

In this paragraph, we give one example for each case. The initial 

position of the observer is    T000 OP . 

In the next figures, the trajectories of the observer and target are 

shown by thick lines, whereas those of the ghosts are shown by 

thin lines. The capital letters (“O” for observer, “T” for target, 

and “G” for ghost) designate the moving objects.  

 

1) One example of observable case (case 1) 

 

The target starts at  T05000  (m) with a velocity of 

 T220 (m/s). The initial velocity of the observer is 

   T2100 OV  (m/s). Its acceleration is 

 T00416.0 (m/s2). The observer and the target are on an 

RDVR-I, since   trrttr x
 0

2

2

1
   (Proposition 4 is 

satisfied). Fig. 1. depicts the scenario which lasts 250 s. 

 

 
Figure 1. Observable case in ROTMA, RDVR-I. 

 

2) Three examples of unobservable cases (cases 2 & 5) 

In the three following examples, the initial observer velocity is 

the same as previously, and the duration of the scenarios is 

360s. 

The first example corresponds to case 5 with a RDVR-II. 

The target starts at  T40003000  (m) with a velocity of 

 T76  (m/s). We can readily verify that 

  75.00023.0tan  tt  (see Proposition 4 of [5]). The 

observer and the target are on a rendezvous route of type II. We 

can see in Fig. 2. that one ghost exists, and it is also in a 

rendezvous route with the observer (see Proposition 8). 

 

 

 
Figure 2. Unobservable case in ROTMA, RDVR-II. 

 

The next example corresponds to case 2  
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The target starts at  T04000  (m) with a velocity of 

 T225 (m/s). We can check that   tttr x 154000
2

1 2   , 

but the inequality 
xrr 0

2 2  is not satisfied since 2252 r  

and  

 3332 0  xr  . Consequently, the observer and the target are 

not on a rendezvous route from Proposition 4. The bearings are 

constant (their value is 90°), two ghosts exist, as announced in 

Table II. and depicted in Fig. 3. Note that if the role of T and G1 

(for example) are inverted (G1 becomes the target and T 

becomes a ghost), then the bearings of this new target are not 

constant, but two ghosts only exist. 

 

 
Figure 3. Unobservable case in ROTMA, with constant 

bearings and no rendezvous route. 

 

In the last example, three ghosts exist. It corresponds to case 5. 

The target starts at  T34642000  (m) with a velocity of 

 T3.166.14 (m/s). The observer and the target are not on a 

rendezvous route and the bearings are not constant. Three ghosts 

exist (the maximum number of ghosts), see Fig. 4. 

 

 
Figure 4. Unobservable case in ROTMA, general case (no 

rendezvous route and non-constant bearings). 
 

VI. CONCLUSION 

In this paper, observability in ROTMA started in [2] for a 

target in constant velocity motion have been extended to a 

smooth observer’s maneuver (constant turn motion and 

constant acceleration motion). We ended up with the 

following results: 

When a part of the displacement of the observer is in an arc of 

a circle, observability is guaranteed.  

When the observer is in constant acceleration motion, the 

trajectory of the target is observable if, and only if the 

trajectory of the target relatively to the observer is in a straight 

line and the target and the observer are in a rendezvous route.  

In any other scenario, the target is not observable. This 

demonstrates that even if the observer kinematic is of an order 

greater than the kinematic of the target, observability is not 

guaranteed. We proved that in this case, the set of ghost-

targets is finite and contains less than three ghost-targets; we 

gave also the way to construct them from noise-free range 

measurement. We proposed a range-based observability 

criterion to know if the target is observable or not.  

 

REFERENCES 
 [1] Jauffret, C., and Pillon, D.  
Observability in Passive Target Motion Analysis. 

IEEE Transactions on Aerospace and Electronic Systems, 32, 4 (Oct. 1996), 

1290–1300. 
[2] Pillon, D., Pignol, A.C., and Jauffret, C. 

Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a 

Leg by Leg Observer’s Trajectory.  
IEEE Transactions on Aerospace and Electronic Systems, 52, 4 (Aug. 2016), 

1667–1678. 

 [3] Ristic, B., Arulampalam S., and McCarthy J.  
Target Motion Analysis Using Range-Only Measurements: Algorithms, 

Performance and Application to ISAR Data. 

Signal Processing, 82 (2002), 273–296. 
[4] Sathyan, T., Arulampalam, S., and Mallick, M.,  

Multiple Hypothesis Tracking with Multiframe Assignment Using Range and 

Range-rate Measurements. 
In Proceedings of the International Conference on Information Fusion, 

Chicago, USA, July 2011. 

[5] Jauffret, C., Pérez, A.C, and,  Pillon, D. 
Bearings-Only Target Motion Analysis: Observability when the Observer 

Maneuvers Smoothly, Submitted to the 20th International Conference on 

Information Fusion, Xi’an, China, Jul. 2017. 
[6] Jauffret, C., Pérez, A.C, and,  Pillon, D. 

Observability: Range-Only vs. Bearings-Only Target Motion Analysis when 

the Observer Maneuvers smoothly.  
In submission in IEEE Transactions on Aerospace and Electronic Systems.  
 

 

 


	I. INTRODUCTION
	II. problem formulation and notations
	A. Definitions and notations
	B. What is observability ?

	III. Observer cinematic models
	A. CT motion
	B. CA motion

	IV. Observability when observer is in ct motion
	V. Observability when observer is in ca motion
	A. Necessary and sufficient observability condition
	B. Unobservable case: construction of the set of ghosts
	C. Examples
	1) One example of observable case (case 1)
	2) Three examples of unobservable cases (cases 2 & 5)


	VI. Conclusion
	References

