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Abstract— Range-only target motion analysis (ROTMA) 

consists of estimating the trajectory of a target using a single 

platform collecting range-only measurements. Observability 

analysis is carried out when the target is in constant-velocity 

motion and the observer maneuvers gently (a constant turn 

motion or a constant acceleration motion). We compare 

observability in bearings-only target motion analysis (BOTMA) 

and ROTMA throughout the paper, together with the rank of the 

Fisher information matrix. In each case, we establish necessary 

and sufficient observability conditions and we identify the virtual 

(or ghost) targets giving the same measurements when the system 

is not observable. 

 

 
Index Terms— Target motion analysis, tracking, range-only, 

bearings-only, observability, Fisher information matrix, constant 

turn motion, constant acceleration motion. 

  

I. INTRODUCTION  

HIS PAPER presents the second part of the observability 

analysis in range-only target motion analysis (ROTMA), 

started in a previous paper [13]. The target (or source) was 

assumed to be in constant velocity (CV) motion. The previous 

paper [13] provided the following results: 

The Fisher information matrices (FIMs) in BOTMA and in 

ROTMA have the same rank when the source is in CV 

motion, whatever the trajectory of the observer. 

Secondly, when the observer is zigzagging, with constant 

speed on each leg, the trajectory of the source is observable in 

ROTMA if and only if it is unobservable in BOTMA. We 

proved this happens when and only when the bearings are 

constant. In this case, the FIM is singular, whereas in 

ROTMA, the target’s trajectory is observable. Conversely, 

when the trajectory of the target is observable in BOTMA, it is 

unobservable in ROTMA.  

At this point, a prior question must be asked: are these 

antinomic observability conditions in BOTMA and in 

ROTMA maintained for other observers’ maneuvers? Some 

answer elements are given in the present paper for two types 

of smooth maneuvers of the observer: a constant turn (CT) 
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motion or a constant acceleration (CA) motion and a 

combination, CA-CV (for BOTMA only) and CT-CV. 

Note that generalizing this comparison is difficult because, 

unlike in BOTMA, general necessary and sufficient 

observability conditions do not exist in ROTMA: indeed, 

when the observer maneuvers, this problem cannot be 

expressed by a linear system, whereas in BOTMA, a linear 

system can be exhibited [3, 11, 16]. In ROTMA, for each 

observer’s kinematics, a specific study of observability must 

be conducted.  

Our strategy of analysis is the same as in [13]: we start with 

BOTMA, we deduce the rank of the FIM, and finally, we 

study the observability of the target in ROTMA (under the 

same conditions). 

We will prove that when the observer is in CT motion, the 

target is observable in BOTMA and in ROTMA as well. In 

this case, the FIMs are of full rank (no antinomy). When the 

observer is in CA motion, several situations can occur: the 

target can be observable in ROTMA and the FIM can be of 

deficient rank, or the target can be unobservable in ROTMA 

and the FIM can be of full-rank or deficient rank. 

When the trajectory of the target of interest is not observable, 

a set of ghost-targets exists, which misleads the operator when 

he or she tries to estimate the state vector. This problem also 

occurs when associating multi-tracks between several arrays 

[6]. Therefore, in BOTMA, the observer must maneuver in 

order to render the trajectory of the target observable. 

Unfortunately, some maneuvers are ineffective [7] [12]. Here, 

we give some examples of ineffective maneuvers in ROTMA. 

 

The paper is organized as follows: 

In Section II, the problem and the ad-hoc notations are given. 

The notion of observability is recalled and the models of the 

two types of trajectories of the observer are given, as well. We 

introduce the notion of a rendezvous route (and the associated 

criteria), which will play a crucial role in the analysis of 

observability when the observer is in CA motion. 

In Section III, observability in BOTMA is analyzed when the 

observer is in CT motion, in CA motion, and in CA motion 

followed by CV motion or the converse. For each kinematic, 

we give necessary and sufficient observability conditions. The 

set of ghost-targets is characterized in the scenarios where the 

target is unobservable.  

Section IV is devoted to ROTMA: we start by revisiting the 

situations in which the observer is in CT motion and then in 

CA motion. For each of them, we give necessary and 

sufficient observability conditions. In unobservable cases, we 

identify the set of ghost-targets. Illustrative examples are 
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given. 

The conclusion follows. 

 

II. GENERAL NOTION AND NOTATIONS 

A. Definitions and notations 

A target (T) and an observer (O) move in the same plane, 

given a Cartesian system. The target has a CV all along the 

scenario, while the observer maneuvers (here, the term 

“maneuver” is employed when the observer is not in CV 

motion). The scenario starts at time 0t  and finishes at time 

fTt  .  

For the observer, the position and velocity at time t are 

respectively    T)]()([ tytxtP OOO   and 

 
  T)]()([ tytx

dt

tdP
tV OO

O

O
 . Both are concatenated into the 

vector       TtytxtytxtX OOOOO
)()( . 

 

For the target, the notations are similar:   T)]()([ tytxtP TTT  , 

  T][ TT
T

T yx
dt

tdP
V  , and    TTTTTT yxtytxtX )()( . 

In the sequel,  0TX  will be simply denoted as 
TX , which 

entirely defines the target’s trajectory. Obviously, 

    TTT VtPtP  0 .  

We will assume that      fOT TttPtP ,0,  . 

The motion of the target relative to the observer is given by 

      T)]()([ tytxtPtPtP OTOTOTOT   and by 

 
  T)]()([ tytx

dt

tdP
tV OTOT

OT
OT

 . The relative velocity 

vector. We define the vector 

          TtytxtytxtXtXtX OTOTOTOTOTOT
)()( . 

 

All the angles are clockwise-positive. Subsequently, we will 

use the symbol   to designate angles: for any pair of vectors 

U  and W ,  WU,  is the angle defined by the couple  WU,  

referenced to U . When U  is collinear to the northward 

direction, we will use W only (for the bearing or heading). 

 

The range and the bearing at time t  are given respectively by 

   tPtr OT  and    tPt OT . So,    
 

 








t

t
trtPOT





cos

sin ; that 

is,        

       







tyttrty

txttrtx

OT

OT





cos

sin . 

 

Subsequently, we will use the following simplified notations: 

 00   ,  00 rr  ,   0OTr Vv  , and  0OTr Vh   for the 

initial bearing, range, relative speed, and heading. For 

convenience, )0(OTX  will be denoted simply 
OTX . 

 

Figure 1 displays a typical scenario. 

 

 
 

Fig. 1. Typical scenario of TMA. 

 

B. Observability notion 

We extend the previous notation to emphasize this 

dependence:  t  and  tr  can be denoted  OTXt ,  and 

 OTXtr , . 

 

We recall that the target’s trajectory is declared observable in 

BOTMA if the following statement is true: 

      OTOTf XXXtXtTt  ,,,,0  . Otherwise, 

the trajectory is said to be unobservable: at least, one vector 

 TOGOGOGOGOG yxyxX )0()0( (defining a CV motion) 

different from 
OTX  exists such that 

     fOTOG TtXtXt ,0,,,  . 

 

Similarly, in ROTMA, the observability definition is 

      OTOTf XXXtrXtrTt  ,,,,0 . Otherwise, 

again, at least one vector  TOGOGOGOGOG yxyxX )0()0(
 

different from 
OTX  exists such that    OTOG XtrXtr ,,  . 

 

The vector 
OOGG XXX   defines the “virtual” trajectory of 

a “ghost-target”, denoted G. We define similarly 

      T000 GGG yxP  , T][ GGG yxV  , 

    T)]()([0 tytxVtPtP GGGGG  , and 

   TGGGGG yxtytxtX )()( , with the convention 

 0GG XX  .  

 

Note that, depending on various circumstances, the set of 

“ghosts” is finite or can be a family (an uncountable set). 

 

Observability analysis has two aims: 

a) Give a necessary and sufficient condition to have 

unicity of the state vector 
OTX . 

b) When this condition is not satisfied, characterize the 

set of  
OGX . 

This will conduct our paper. 

 

 

Target 

Observer 

North (y) 

East (x) 

Observer’s 

heading 

Bearing : (t) 

Range : R(t) 

Target’s heading 
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C. Observer kinematic models 

As announced in the introduction, two models of smooth 

observer motion are considered in this paper: in the first, the 

observer travels in an arc of a circle at constant speed, and in 

the second, it has a constant acceleration vector. 

 

1) CT motion 

The observer turns around a fixed point 










C

C

C
y

x
P  at range 

0 , with a constant turn rate 0  (positive if the motion 

of the observer is clockwise) and an “initial angle”   relative 

to north, at the beginning of its motion. Its speed is constant. 

As a consequence, at time t  (recall that the initial time is equal 

to 0), the location of the observer is given by  

 
 
 

















t

t
PtP CO

cos

sin (see Fig. 2). In order to simplify 

the coming calculation, we will assume that 










0

0
CP . 

 
Figure 2. Typical scenario when the observer is traveling 

in an arc of a circle. 

 

2) CA motion 

The position of the observer at any time t  is 

      
2

00
2t

VtPtP OOO
,  where  0OV  is the initial velocity 

and  Tyx  is the (non-zero) acceleration vector. The 

relative position of the target with respect to the observer is 

      
2

00
2t

VtPtP OTOTOT
   (1) 

Without loss of generality, we will assume that 0x  and

0y . Indeed, a suitable rotation of the entire scenario 

allows us to be in this case.1 This assumption will make easier 

the following observability analysis. 

 

 

1  The matrix of this rotation is 













sincos

cossin

. 

D. Rendezvous routes in CA motion 

 

The observability criteria when the observer is in CA motion 

will be shown to be linked to the rendezvous (or collision) 

route in Sections III. C. (BOTMA) and IV. B. 2. (ROTMA). 

 

Definition: the rendezvous route 

The target and the observer are said to be on a rendezvous 

route (RDVR), when they are in the same place at a time ct . 

 

Actually, this rendezvous instant is purely virtual: before  

0t  and after 
fT , O and T were and will be free to choose 

their own trajectories. Note that this motion model is not the 

pursuit curve motion, which has not been studied in the TMA 

observability problem, from our knowledge. 

 

1) The two types of RDVR 

 

Proposition 1: General properties of RDVR 

If O and T are on an RDVR, then 

- Either  0OTP ,  0OTV  and   are collinear, 

- Or   0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear. 

 

Proof: 

O and T collide at ct  if and only if  

   

   
















)3(000

)2(0
2

1
00 2

OTcOT

xcOTcOT

yty

txtx



 
 

If   00 OTy , then (3) implies that   00 OTy . The vectors 

 0OTP ,  0OTV  and   are collinear. 

 

Else,  
 

0
0

0 
c

OT
OT

t

y
y . In other words,  0OTP  and   are 

noncollinear, and  0OTV  and   are noncollinear. 

 

QED. 

 

Definition: The two types of RDVR 

The RDVRs are called rendezvous routes of type I (RDVR-I), 

when  0OTP ,  0OTV , and   are collinear. When  0OTP  and 

  are noncollinear, and  0OTV  and   are noncollinear as 

well, the RDVRs are called rendezvous routes of type II 

(RDVR-II). 

 

Note that for the RDVR-II,  0OTP  and  0OTV  can be 

collinear. Fig. 3 and Fig. 4 depict an example of RDVR-I, and 

of RDVD-II, respectively. We can notice that the bearings are 

constant for the RDVR-I whereas they change in time for the 

RDVR-II. We will see why and how subsequently.  

 

 



 4 

 
Figure 3. Example of RDVR-I. 

 

 

 

 
 

Figure 4. Example of RDVR-II. 
 

The converse of Proposition 1 is given in the following two 

propositions. 

 

Proposition 2: Condition of RDVR-I 

Assume that  0OTP ,  0OTV  and   are collinear; that is, 

  0OTP  (with 0 ) and    0OTV . O and T are on an 

RDVR if and only if   22  . 

 

Proof: 

O and T are on an RDVR, if and only if  

    0
2

1
00 2  xcOTcOT txtx   (we do not have any equation with 

the y-component since 0y ). This equality is equivalent to 

0
2

1 2 







 xcc tt   or 0222   cc tt . 

 

Hence, O and T are on an RDVR if and only if the equation 

0222   tt  has one or two real roots (one of them is
ct ), 

that is, if and only if the discriminant  22   is positive.  

 

QED. 

 

Obviously, the assumption “  0OTP ,  0OTV  and   are 

collinear “ is not sufficient to characterize an RDVR-I, but 

implies that the bearings are constant. Conversely, if the 

bearings are constant, the target and the observer are not 

necessarily on an RDVR-I. 

Let us note that in this case, the bearings are piecewise equal 

to 
2


 , and Proposition 2 remains valid up to a rotation, that 

is, for   constantt  up to 
ct . Note also that two rendezvous 

instants may exist (depending on  ). In Fig. 5, an example of 

such a situation is given: The target starts at  T04000  (m) 

with a velocity of  T220 (m/s); the observer starts at 

 T00  (m) with a velocity of  T210 (m/s) and its 

acceleration vector is    T00416.0       2m/s  . 

 
Figure 5. Example of RDVR-I where the target and the 

observer have two RDVs. 
 

 

Proposition 3: Condition of RDVR-II. 

Assume that  0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear as well. 

O and T are on an RDVR if and only if 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Proof: 

Equation (3) implies that  
 0

0

OT

OT
c

y

y
t


 . Substituting into (2), 
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we get  
 
 

 
 
 

0
0

0

2

1
0

0

0
0

2

2

 x

OT

OT
OT

OT

OT
OT

y

y
x

y

y
x 





. We end up with

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



  

 

QED. 

 

Note that, an unique RDV instant exists for an RDVD-II.  

In the two following propositions, we give a criterion based on 

the measurements (range or bearing), which allows us to know 

which type of RDVR we are on. 

 

2) Criterion of RDVR-I 

 

From the remark following Proposition 2, when the target and 

the observer are on an RDVR-I, the bearings are constant. In 

this case, the trajectory of the target is not observable in 

BOTMA. In ROTMA, we will see that this type of route must 

be considered in the observability analysis (see Proposition 

15).  

The following proposition gives us a criterion of RDVR-I 

based only on range. In practice, when the measurements are 

corrupted by additive noises, it can help to construct a 

statistical test to decide if the two mobiles are on an RDVR-I. 

 

Proposition 4: Criterion on range of RDVR-I 

The target and the observer are on RDVR-I if and only if a 

scalar r  exists such that, for  fTt ,0 , either 

rtrttr x
 0

2

2

1
)(  ,  or rtrttr x

 0

2

2

1
)(    and 

xrr 0

2 2 . 

 

Proof: 

First, assume that the target and the observer are on an RDVR-

I. 

 

From (1), we have 

      xxOTOTOT tt
t

xtxtx  







 2

2

2

1

2
00  , and 

   txtr OT . We denote by 
1t  and 

2t  
(with 

21 tt  ) the roots 

of the equation   0txOT
. Note that they can be the same. 

If    21,,0 ttT f  , then    txtr OT . If 
1tT f  , or 02 t

then    txtr OT . So, we get the result. 

 

Conversely, suppose now that either rtrttr x
 0

2

2

1
)(  , or 

rtrttr x
 0

2

2

1
)(   for  fTt ,0  and 

xrr 0

2 2 . Let us 

prove that the observer and the target are on an RDVR. To 

avoid repetition, we will only consider the case 

rtrttr x
 0

2

2

1
)(   and 

xrr 0

2 2 . 

We have to solve the following equation: 

   
2

2

0

2

2

2

1

2

1
00 








 xOTOT trtrtVtP  . 

 

After developing the left and right expressions and equating 

the coefficients of each power of t, we end up with a system of 

four equations: 

  2

0

2
0 rPOT              (4) 

    rrVP OT

T

OT


000             (5) 

    x

T

OTOT rrPV 0

22
00         (6) 

  x

T

OT rV 0              (7) 

 

In terms of components, they are equivalent to 

    2

0

22 00 ryx OTOT             (8) 

        rryyxx OTOTOTOT


00000       (9) 

      xxOTOTOT rrxyx  0

222 000       (10) 

  xxOT rx   0             (11) 

 

From (11), we get   rxOT
 0 . Substituting into (9) and (10), 

we obtain 

       rrxyy OTOTOT


0000        (12) 

     xOTOT rxy 0

2 00           (13) 

 

Now, from (8), we have  

       00

2 000 rxrxy OTOTOT        (14) 

 

Taking the square of each side of (12), after replacing  02

OTy  

and  02

OTy  with their respective expressions given by (13) and 

(14), we get 

         22

00

2

0 000 rrxrxrx OTxOTOT
  . (15). 

 

Let us examine two cases: 

 

Case 1 :   00 rxOT   

 

Equation (15) is equivalent to   









x

OT

r
rx



2

00
 . 

Substituting into (14), we finally get 

 
xx

OT

rr
ry



22

0

2 20










 .  

 

Consequently, 02
2

0 
x

r
r



 ; that is, 02 2

0  rr x
 . 

But, by assumption, we have 02 2

0  rr x
 . Hence 

02 2

0  rr x
 . (16) 

 

It follows that   00 OTy ; hence   2

0

2 0 rxOT  . We 

conclude that   00 rxOT  . Reporting this value into 

(12), we get 0r . From (16), we have 00 r , which 

is incompatible with the assumption   0tPOT
 for 

 fTt ,0 . This must be discarded. 
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Case 2 :   00 rxOT   

 

From (13) and (14),   00 OTy  and   00 OTy ; that is 

 0OTP ,  0OTV  and   are collinear. With the 

inequality 
xrr 0

2 2  being equivalent to  22  , 

the target and the observer are on an RDVR-I, from 

Proposition 2. 

 

QED. 

 

3) Criterion of RDVR-II 

 

Similarly to ROTMA, BOTMA observability conditions (see 

Proposition 9) need to have a criterion of RDVR-II. 

 

Proposition 5: Criterion on bearing of RDVR-II 

O and T are on RDVR-II if and only if   tt 10tan   , with 

01  . 

The respective values of 
0  and 

1  are  
 0

0

OT

OT

y

x ,  and 

       
 0

0000
2

OT

OTOTOTOT

y

xyxy   . 

 

Proof: 

We have to prove the equivalence 

 
 
 

        0000
0

0
2tan

210 OTOTOTOT

OT

OT
x yxyx

y

y
tt 


 

We have  
   

   00

2

1
00

tan

2

OTOT

xOTOT

yty

txtx

t











 . 

If   tt 10tan    then  

          tytytxtx OTOTxOTOT 10

2 00
2

1
00    . 

As a consequence,  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . We get the equality 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Conversely, if  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 , 

then we readily verify that  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . Hence, there are two real numbers

0  

and 
1  such that 

           tytytxtx OTOTxOTOT 10

2 00
2

1
00    . 

 

QED. 

 

To resume, 

the two mobiles are on an RDVR-II

  0and,tan 110   tt ,  

the two mobiles are on an RDVR-I   0tan   t . 

 

It is well known that when the observer is itself in CV motion 

and the bearings are constant, the observer will meet 

eventually the target (the collision instant can equal to infinity 

if the two routes are parallel. To avoid this collision hazard 

well known by sailors, the observer must maneuver. However, 

if it accelerates and if the bearing tangent is linear, it may still 

remain on a rendezvous route. 

 

III. OBSERVABILITY CRITERIA IN BOTMA 

 

Let us recall that in BOTMA, the target trajectory is 

observable if and only if the FIM is nonsingular. We give 

hereafter two general results, necessary to prove observability 

when the trajectory of the target is a combination of CA and 

CV motions (see proposition 11). 

  

A. Two general results 

 

Proposition 6: Observability equivalence between two 

observers in BOTMA 

Let there be two observers measuring the same bearings. If the 

target is observable from one, it will be observable from the 

other (or equivalently, if it is unobservable from one, it will be 

unobservable from the other). 

 

Proof: 

We recall that BOTMA has a linear version, whatever the 

trajectory of the ownship. Indeed, the noise-free measurement 

equation  
   
   










 

tyyty

txxtx
t

OTT

OTT





0

0
tan 1  can be transformed 

into the linear equation 

        
         NOO

T

tttttyttx

Xtttttt

,,,sincos

sincossincos

1 







 
or, in short,   ZXT A , where the k-th line of  A  is 

        kkkkkk tttttt  sincossincos  , and the k-th 

element of Z  is        kkOkkO ttyttx  sincos  ; see [3, 11, 16]. 

The observability is hence brought by the set     Ntt  ,,1  , 

which means that if two observers collect the same set 

    Ntt  ,,1  , if the target is observable from one, it will be 

observable from the second one. In this case, the state vector is 

computed by      ZXT

1
  AA

T . 

 

QED. 

 

Proposition 7: Observability equivalence for time-reversed 

bearings 

Let there be two observers #1 and #2. Observer #2 measures the 

same bearings as observer #1, but in the inverse temporal 

order, that is 
     kNk ttt  12  , where 

  ki t  is the bearing 

measured at time kt  by observer #i. If the target detected by 
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observer #1 is observable, then the target detected by observer 

#2 will be, and the converse. 

 

Proof: 

Let us define the matrix 
  iA  whose k-th line is 

            kikkikkiki tttttt  sincossincos  . Let us 

prove that 
       21 RankRank  AA  . We note that the  k-th 

line of 
  2A  is  

            

            kNkkNkkNkN

kkkkkk

tttttttttt

tttttt





1111

2222

sincossincos

sincossincos





 
 

We construct a third matrix denoted A
~

 by permutation of the 

lines of 
  2A , that is, the first line of A

~
 is the N-th line of 

  2A , the second line of 
  2A  is the (N – 1)-th of 

  2A , 

and so on. In other words, we flip the matrix in the up/down 

direction. Obviously,      2Rank
~

Rank AA  . We note that 

the first two columns of A
~

 are the first two columns of 
  1A . 

The third (resp. fourth) column of A
~

 is Nt  
multiplied by the 

first (resp., second) column of Nt , minus the third (resp., fourth) 

column of 
  1A . Hence,      1Rank

~
Rank AA  . 

Consequently, 
       12 RankRank  AA  . We readily 

deduce that 
             2211 RankRank  AAAA

TT  . 

 

QED. 

 

Note that these properties cannot be extended for any 

measurements such as frequency measurements because the 

Doppler effect is not time-reversible.  

 

B. Observer in CT motion 

 

The CT motion was defined in Section II.C.1. We propose the 

following result when the noise-free bearings are continuously 

available during  fT,0 . 

 

Proposition 8: Observability in BOTMA for CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable in 

BOTMA. 

 

Proof: 

Suppose that a ghost (G) moving in CV motion is detected in 

the same bearings as the target for any  fTt ,0 . 

 

The equality      tPtPt OGOT   is equivalent to

     tPtktP OTOG   for certain   0tk  

            fOTOG TttPtPtktPtP ,0,   

          tPtktPtktP OTG 1  

         
 

 

















t

t
tkVtPtkVtP TTGG

cos

sin
100  

  1 tk . 

 

In other words, no such ghost exists: the trajectory of the 

target is hence observable. 

 

QED. 

 

Note that if the observer’s trajectory contains at least one arc 

of a circle, then the trajectory of any target having a constant 

velocity is observable in BOTMA. 

 

C. Observer in CA motion 

 

Proposition 9: Observability criterion in BOTMA for CA 

motion 

Assume that the observer is in CA motion. 

The target’s trajectory is observable in BOTMA if and only if O 

and T are not on an RDVR and the bearings are not constant. 

 

Proposition 10: Set of ghosts in BOTMA for an RDVR-II 

Assume that the observer is in CA motion. 

The target’s trajectory is unobservable if and only if 

  tt 10tan   . 

 If 01  , the target and the observer are on a RDVR-II and 

the ghosts are on a RDVR-II with the observer. Their 

trajectories are defined by        00 TG XX , where   is 

a scalar and   is a vector in the null space of the matrix 

   
     

 



























1000

00
2

0

0000

0000

OT
x

OTOTOT

OTOT

y

yxy

xy






. The values of 
0  and 

1  

are given in Proposition 5. 

If 01  , the trajectories of the ghosts are defined by 

    Ξ 00 TG XX , with  T00 21  Ξ , for any 
1 and 

2   such that 021  . 

 

Proof of the two previous propositions: 

 

We have to solve the equation    OTXtXt ,,   . Since the 

implication 

       OTOT XtXtXtXt ,tan,tan,,    holds, we 

concentrate our effort on the equation 

   OTXtXt ,tan,tan   . We define the components of X

by  Tyxyx  . 

 

Two cases must be studied: 

 

Case (1):   00 OTy  or   00 OTy . 

     OTXtXt ,tan,tan 
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   00

2
00

2

22

OTOT

xOTOTx

yty

t
xtx

yty

t
xtx
















 
, for any t  in  fT,0 . 

    

     yty
t

xtx

yty
t

xtx

xOTOT

OTOTx





























2
00

00
2

2

2

,  fTt ,0 . 

 

After reordering the terms of this equation, we get 
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0
2

0
2

0

0000

00

OT

OT
x

OT
x

OT

OTOTOTOT

OTOT

yy

yxyyyx

xyxyyxyx

xyyx








 

 

We end up with the system  
)( BXM  

with 
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OT
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OTOT
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yxy

xy




M

 and 

   

     

  






















0

0
2

00

00

0

OT

OT
x

OTOT

OTOT

y

yyx

yx
B








 

 

We note that 
OTX  is a solution of )( .  

 

The vector 
OTX  is the unique solution of )(  if and only if 

  0det M , in other words, the trajectory of the target is 

observable. Conversely, the trajectory of the target is not 

observable if and only if   0det M . Consequently, the 

discussion is about  Mdet .  

 

We readily get 

               xOTOTOTOTOTOT yyxyyx 0
2

1
00000det 22  M . 

 

If   0det M , we have to discriminate the subcase where 

  00 OTy  from the subcase   00 OTy . 

 

If   00 OTy , then   00 OTx . The case   00 OTx  means that 

the target and the observer are co-localized at the initial time. 

This does not satisfy the assumptions given in II A. This case 

is hence discarded.  

 

If   00 OTy , then  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 ; 

that is, the observer and the target are on an RDVR-II (cf. 

Proposition 3). Since the acceleration 
x  is not equal to zero, 

 0OTy  cannot be equal to zero. As the consequence, the first 

two columns of M are not collinear. We remark also that the 

fourth column of the matrix M  cannot be simultaneously 

collinear with another one, so the rank of M is equal to 3. 

The set of solutions of )(  is the set of the vectors defined by 

 OTOG XX , where   is a scalar and 

 T0321   is a nonzero vector in the null space of 

M .  We verify that  t  has a special form: 

   tt 10

1tan    , with  
 0

0
0

OT

OT

y

x
  and 

       
 0

0000
21

OT

OTOTOTOT

y

xyxy  
 . 

 

Note that 
   

   
t

yty

t
xtx

OGOG

xOGOG

10

2

00

2
00












 is equivalent to 

          00
2

00 10

2

OGOGxOGOG ytyt
t

xtx    . 

 

Hence, at time   
 

 
 0

0

0

0

OT

OG

OG

OG
c

y

y

y

y
t


  (which depends on the 

relative coordinate  0OGy  of the considered ghost), we get 

  0cOG tx  and   0cOG ty . As a consequence, all the 

ghosts and the observer are on an RDVR-II (but at different 

times of rendezvous). 

 

Case (2):   00 OTy  and   00 OTy ; that is,    0,0 OTOT VP  and 

  are collinear. Note that  

O and T are not necessarily on an RDVR-I. 

Then    
2

,,


  OTXtXt   0 yty  ; that is, 

0 yy  . 

The bearing rate is zero and the set of solutions is the line of 

sight of the target: any ghost traveling in this line (the X-axis) 

is detected in the same (constant) bearing 









2

  as the target 

of interest. The target’s trajectory is not observable. 

 

QED. 

 

D. Observer in CV and then CA motion and the converse 

 

Observability must be studied only when the target is not 

observable during the CA motion of the observer, that is, 

when O and T are on an RDVR of type II or the bearings are 

constant. To do this, we need the notion of an “angle-

equivalent non-maneuvering observer” [7] and [12] when O is 

in CA motion; the existence of a virtual observer (E) in CV 

motion continuously collecting the same bearings as the 

observer will be proved in the sequel. 

 

In the rest of the paragraph, we will assume that 

  tt 10tan    (during the CA motion only). 
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Lemma 1 

If the observer and the target are on a rendezvous route of 

type II or the bearings are constant, then a virtual observer, 

located at  0OP  at time 0t , in CV motion, continuously 

collecting the same bearings as the observer, exists. 

Proof: 

We denote in this proof the initial position and the velocity of 

a virtual observer in CV motion by 

           TT
00000 OOEEE yxyxP   and  TEEE yxV  , 

respectively. 

 

If the bearings are constant, then     000  OO yy  . The virtual 

observer (in CV motion) such that    00 OE PP   and  0OE VV   

collects the same bearings as O. 

 

If O and T are on a rendezvous route of type II, suppose that a 

virtual observer E in CV motion exists. The equality 

 
 
  












 

ETOT

ETOT

yty

xtx
t





0

0
tan 1  implies that 

 
 

t
yty

xtx

ETOT

ETOT
10

0

0
 







 . Consequently 0ETy , and 

  1
0


OT

ET

y

x . Since        
 0

0000
21

OT

OTOTOTOT

y

xyxy  
  (see 

Proposition 10), we get     
 
 0

0
00

OT

OT
OTOTET

y

x
yxx   . We end 

up with  
   

 
 






















T

OT

OT
OTO

E

y

y

x
yx

V




0

0
00

. Note that this virtual 

observer is unique. 

 

QED. 

Hereafter, we propose an example of a scenario where the 

observer has a higher order dynamic than the target and the 

target’s trajectory still remains unobservable. We have chosen 

a scenario with an RDVR-II (hence satisfying Proposition 3):  

   

  )m/s(]76[and,)m(]40003000[0

,)m/s(]210[0,]00[0

TT

TT





TT

OO

VP

VP   

with 0416.0x  m/s2. The duration is 6 minutes. Figure 6 

depicts the maneuvering observer together with the target 

(thick lines) and four ghosts (thin lines). Moreover, the 

trajectory of the virtual observer E is plotted. Four lines of 

sight are given.  

 

 
Figure 6. Non-observable trajectory in BOTMA, the 

target, some ghosts, and the bearing-equivalent-non-

maneuvering observer. 

 

 

Proposition 11: Observability criterion in BOTMA for CA-

CV and CV-CA motions 
Assume that the observer is successively in CV motion and in 

CA motion (or in CA motion and in CV motion). The target’s 

trajectory is observable in BOTMA if and only if the bearing 

rate is non-null (that is, the bearings are not constant). 

 

Proof: 

We have only to consider the case where the target’s trajectory 

is not observable during the maneuvering phase. 

 The first leg starts at time 0t  and ends at time 
1Tt  . At this 

time, the CA motion starts and finishes at time 
fTt  . 

If the bearings are constant during this phase, then 

   10 TPP OE   and  0OE VV   (see lemma 1). We deduce that 

the bearings during  1,0 T  are also constant, that is, the 

respective trajectories of the virtual observer and of the target 

are on the same line. The target is non observable. 

If O and T are on an RDVR-II, following Lemma 1, the 

observer collects the same bearings as the non-maneuvering 

observer E. Hence, the observer collects the bearings acquired 

by an observer whose trajectory is composed of two legs: the 

first one is defined by  0OV , and the second one by 
EV . Note 

that 
EV  cannot be equal to  0OV , otherwise  0OT yy    and 

consequently 0x  (see Proposition 3). In short, the observer 

acquires the same bearings as the ones collected by a leg-by-leg 

maneuvering observer. Following [10], if the bearings are not 

constant, the target’s trajectory is observable from the 

equivalent observer E. Proposition 6 completes the proof. 

 

Proposition 7 allows us to determine when the observer is first 

in CA motion and then in CV motion. 

 

QED. 

IV. OBSERVABILITY CRITERIA IN ROTMA 

We proved in [13] that the target’s trajectory is not observable 

in ROTMA when the observer is in CV motion. Actually, in 
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this case, the ROTMA problem has a linear version, similarly 

to BOTMA. Indeed, even if the range does not depend linearly 

on the vector X, the square of the range can be expressed in 

linear form, relative to another vector denoted Z: 

          tVtPVtPtrtVPtr OTOT
T

OTOTOTOT 
2

2
2

2 0200

 

We define 
 

 






































3

2

1

2

2

0

0

Z

Z

Z

V

PV

P

Z

OT

OT

T

OT

OT

.  

So,     ,3,2,1,1 22  kZtttr kkk
 . 

This is another proof of the non-observability of the target’s 

trajectory in ROTMA, since this trajectory depends 

(mathematically speaking) on a three-dimensional vector, 

whereas the trajectory is defined by X. The vector Z is 

nevertheless observable: it defined the set of solutions given in 

Section IV-B of [13], which is an uncountable set (due to this 

linearity). 

 

In the two next subsections, we will consider two types of 

kinematics of the observer: CT motion and CA motion. 

 

A. Observer in CT motion 

 

Proposition 12: Observability in ROTMA for CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable by range 

measurements only. 

 

Proof: 

Again, the proof is made in continuous time as in BOTMA. 

Suppose now that another target G moving with a constant 

velocity, say  
GV , is at the same range as the target of interest 

T. The square of the range at any time t  is 

                     22222 tytytxtxtytytxtxtr OGOGOTOT 

 
  

         

         
.

cos0sin0

cos0sin0

22

22

t

tytytxtx

tytytxtx

GGGG

TTTT















 

or, equivalently,  

          

        
    

          

        
     .,cossin2

cos0sin02

00200

cossin2

cos0sin02

00200

222222

222222

ttytxt

tytx

yyxxtyxtyx

tytxt

tytx

yyxxtyxtyx

GG

GG

GGGGGGGG

TT

TT

TTTTTTTT

































 

This implies the following five equalities: 

       

       

       

       

   

   
































)18(.cossin

cossin

)17(cos0sin0

cos0sin0

0000

0000

2222

2222









tytx

tytx

tytx

tytx

yyxxyyxx

yxyx

yxyx

t

TT

GG

TT

GG

TTTTGGGG

TTGG

TTGG









 
Equations (17) and (18) are equivalent to 

 

 
     tPP

t

t
TG 












000

cos

sin
T



  and 

 

 
  tVV

t

t
TG 












0

cos

sin
T



 . Since  

 















t

t

cos

sin  spans the 

whole two-dimensional space,    00 TG PP   and 
TG VV  . 

 

QED. 

 

Obviously, if the observer’s trajectory contains at least one arc 

of a circle, then the trajectory of any target having a constant 

velocity is observable in ROTMA. 

 

B. Observer in CA motion 

 

We proved in [13] that, when the observer has a leg-by-leg 

motion, the trajectories of the ghosts are obtained by orthogonal 

transformations of the trajectory of the target of interest. The 

matrices of these transformations are shown to be constant (they 

are independent of time). They are denoted H . 

 

Here, the matrices of these transformations can depend on time. 

This makes the analysis much more complex. In the following 

subsection, two examples are given: one with a constant H  and 

another with a non-constant matrix denoted  tH . 

 

1) Examples of constant and non-constant orthogonal 

transformation matrices 

 

First of all, we consider the case where  tPOT
 is not collinear 

with  . Let us prove that a ghost-target exists. Indeed, 

consider the time-dependent vector defined by

      









2
00

2t
tVPtP OTOTOG H for some orthogonal (and 

constant) matrix .H  The equality 

      
2

00
2t

tVPtP OGOGOG
 holds if and only if 

   00 OTOG PP H ,    00 OTOG VV H , and  H . This 

last equality implies that H  is the orthogonal matrix of the 

symmetry around the line spanned by the vector  . This 

constant orthogonal matrix will be denoted S  in the sequel. 

Hence the vector  tPOG
 defines the trajectory of a ghost-

target. 

We can conclude by the following proposition: 
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Proposition 13 

If  0OTP
 
or  0OTV  is not collinear with  , then the target is 

not observable.  

 

Let us present an example of this situation, depicted in Fig. 7. 

 

At the beginning of the scenario, the observer starts at 

 T00 with an initial speed of 5 m/s and an initial heading of 

90°. Its acceleration is the constant vector 

 T002.0006.0 (m/s2). The target starts at  T150  

(km) with a speed of 4 m/s and a heading of 0°. The duration 

of the simulation  is 45 min. Note that with an ad-hoc rotation, 

we can be again in the case where 0y . 

   

 
Figure 7. ROTMA: The observer in constant acceleration 

motion, the target, and a ghost. 

 

Conversely, if  0OTP ,  0OTV , and   are collinear, then the 

target is not necessarily observable. Let us give a non-obvious 

example: 

 

Let us consider an observer starting from 









0

0
 with a certain 

velocity and the acceleration vector 










0

2
 and a target 

whose relative motion is defined by   









0
0

2u
POT

 (for a 

certain value 0u ) and   









0

0
0OTV . Then a ghost exists and 

its relative trajectory is defined by   









0
0

2u
POG

 and 

  









u
VOG

2

0
0 . We have       

2
00

2t
VtPtP OGOGOG

. We 

readily check that      tPttP OTOG H  for the rotation matrix 

  















22

22

22
2

21

tutu

tutu

tu
tH . 

 

The second example leads us to think that analyzing 

observability must not be reduced to seeking constant 

orthogonal matrices, conversely to the case of a leg-by-leg 

trajectory of the observer [13]. 

 

2) Necessary and sufficient observability condition 

 

The following analysis will be conducted for the relative 

motion with respect to the observer’s trajectory. The question 

is to identify, if they exist, vectors  TyxyxX   such 

that  

  ttP
t

yty

xtx
OT 












,

2

2




      (19) 

Such a vector will be called a solution. The unknowns are the 

initial relative ghost-target position    TyxPOG 0  and its 

initial relative velocity    TyxVOG
0 . 

 

From the above subsection, we know that the set of solutions 

contains, of course, the vector defining the trajectory of the 

target, that is,         T0000 OTOTOTOTOT yxyxX   and 

the vector 

           T0000 OTOTOTOTOT yxyxX  SI2
, where 

the symbol   denotes the Kronecker product and 
2I  is the 

22  identity matrix. For convenience, the vector   OTXSI2   

is denoted S

OGX . It defines the trajectory of a ghost. 

 

We will show below that most of the time, other ghost-targets 

exist and the vectors defining their trajectories are linked to 

OTX  by a time-dependent orthogonal matrix  tHI2  . 

  

Before starting our analysis, we give a fundamental result in 

the following lemma: it establishes the equivalence between 

observability in discrete time and observability in continuous 

time. Therefore, we will conduct our analysis in continuous 

time, but the results will be valid for discrete time.  

 

Lemma 2 

If four different times   4,3,2,1,,0 nTin fn , satisfy   

     nOT
n

OGnOG PVP 


 
2

00
2

                       (20)  

then for any  fTint ,0  

       fOTOGOG TttP
t

tVP ,0,
2

00
2

 .  (21) 

 

Proof: 

First of all, note that eq. (21) is equivalent to  

      2

2
2

2
00 tP

t
tVP OTOGOG                         (22) 
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Each term of this equality is a polynomial function of degree 

4: 

    4

2

32

2
2

4
2

2
00 ttdtctba

t
tVP GGGGOGOG




, with 

 

   

   

  )23(0

)23(00

)23(00

)23(0

222

222

dxVd

cxyxPVc

byyxxVPb

ayxPa

xOGG

xOGOGG

OGOGG

OGG



















T

T

T

 

  4

2

322

4
2 ttdtctbatP TTTTOT


 , with  

 

     

   

  )24(sin0

)24(sin00

)24(cos00

)24(0

00

22

00

2

0

2

dhvVd

crvPVc

bhvrVPb

arPa

rxrOTT

xrOTOTT

rrOTOTT

OTT















T

T

T

 

Eq. (20), which is equivalent to 

      4,3,2,1,
2

00
2

2
2

 nPVP nOT
n

OGnOG 


  

gives us four instants where these two polynomial functions 

take the same values. Because they have a common coefficient 

(the 4th degree coefficient which is 
4

2


), these two 

polynomial functions are equal. 

QED. 

 

Eq. (23) and (24) yield the following lemma on which the 

search of ghost-target is based: 

 

Lemma 3 

The set of solutions of (19) is defined by the following 

equations: 

 

)28(sin

)27(sincos

)26(cos

)25(

00

2222

00

2

0

22

rxrx

xrrx

rr

hvx

rhvxyx

hvryyxx

ryx



















  

 

Note that eq (28) implies  0OTxx   . 

 

The next proposition characterizes the set of ghost-targets. the 

set of solutions among the set of four-dimensional vectors 

whose first component is a root of a certain quadratic equation 

given below, and the third component is  0OTx . 

 

Proposition 14 

The set of targets at the same range as the target of interest is 

composed by the target whose trajectory is defined by  

  OTOG XX SI2

S   and by  those whose trajectories are 

defined by  Tyxyx  , such that   

a)  x  is equal to  0OTx  or satisfies 

  02sin 2

00

2

0

2
2  rh

v
rx

v
x r

x

r

x

r 


 

b) and  0OTxx  . 

 

Due to its length, the proof (based on Lemma 3) is given in 

Appendix A. 

 

The two other components of 
OGX , that is, y  and y , remain 

to be identified using Eqs. (25), (26), and (27). 

 

For convenience, we now define   2

00

2 rSrxxxQ    

with 

x

rv




2

  and  rhS 2sin 0   . Note that   is negative. 

By convention, the heading 
rh  is zeroed when 0rv . 

 

Now, we are able to give a necessary and sufficient 

observability condition. 

 

Proposition 15: Observability condition in ROTMA for a CA 

motion 

Assuming that the observer is traveling with a constant 

acceleration vector, the trajectory of the target is observable 

from at least four range measurements acquired at different 

times if and only if O and T are on an RDVR-I. 

 

Proof: 

Firstly, suppose that the trajectory of the target is observable. 

From Proposition 13,  0OTP ,  0OTV , and   are collinear, so 

  0OTP  and    0OTV . In terms of coordinates, this 

yields       00,0,0  OTxOTxOT yxx   , and 

  00 OTy . Hence  

 

x

OTx




02
 ,    0sinsin 00000 OTxrrSr   , and 

consequently 

 
 

 
 

 0
0

0
0 2

22
2

OT

x

OT
OT

x

OT x
x

xx
x

xxQ 



. 

 

Formally, the roots of   0xQ  are  0OTxx   and 

 
 

x

OT
OT

x
xx



0
0

2
 . Since the trajectory of the target is 

observable, either    
 

x

OT
OTOT

x
xx



0
00

2
 , in other words, 

 0OTx  is a double root (this corresponds to 
2

2
  ), or 

 
 

x

OT
OT

x
x



0
0

2
  is an unacceptable physical solution; that 

is  
  2

0

2
2 0

0 r
x

x
x

OT
OT 













. Because  022

0 OTxr  , this 

inequality is equivalent to  22  . The target and the 
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observer are on an RDVR-I from Proposition 2. 

 

Conversely, suppose that the target and the observer are on an 

RDVR-I; that is   0OTP  and    0OTV , and  22 

. We have  

          TT
000000 xxOTOTOTOT yxyx  . 

Under this assumption, the scalars 
TT ba , and 

Tc, , defined in 

(24), take the following values

  22222 ,, xTxTxT cba   . So, the set of 

equations (25), (26), and (27) becomes 

  )31(

)30(

)29(

22222

2

2222

xxx

xx

x

xy

yyx

yx















   

which is equivalent to  

 

  )34(

)33(

)32(

2

2222

xx

xx

x

xy

xyy

xy















  

 

Taking the square of (33), we obtain  22222 xyy xx   . 

 

Then using (32) and (34), we get  

    222222 xxx xxxxx   , which can be 

factorized into       222
xxx xxxx      

(35). 

 

If 
xx  , then (35) is equivalent to   xx x  2 , 

from which we derive   xx  2 . Substituting into (32), 

we have    22222

xy   ; that is, 

  2222 2 xy   . As a consequence,   02 22  . 

Let us consider the two following cases. (i) 0 . Then 0  

and 0y  ; we deduce from (29) that 
xx  . Reporting 

this value into (34), we get 22

xy  . We deduce that 

0 . Hence 0 , which is incompatible with the fact that 

  0tr , for  fTt ,0 . (ii) 0 . Then 02 2  , but 

by assumption, 02 2  . Hence 02 2  . We have 

0y . Now, from (33), we get 
xx  , which is impossible. 

From this discussion, we conclude that the case 
xx   

must be rejected. 

 

Hence, 
xx   and consequently 0y  and 0y . The 

trajectory of the target is observable.  

 

QED. 

 

Recall that the FIM in BOTMA and the FIM in ROTMA are 

of the same rank. As a consequence, when O and T are on an 

RDVR-I, the FIM is singular (since in BOTMA, the target 

trajectory is unobservable). This is a nontrivial example of a 

mismatch between the singularity of the FIM and the 

observability (in ROTMA). A similar example was given in 

[13], when the observer is zigzagging. 

 

3) Unobservable case: construction of the set of ghosts 

 

When the observability condition given in Proposition14 is not 

satisfied, identifying the set of ghosts is interesting. We 

propose to solve this problem by using the same approach as 

previously, by exploiting the roots  21, xx  of  xQ . To do 

this, we need a first result. 

 

We start with the following proposition: 

 

Proposition 16: Existence condition of only one ghost in 

ROTMA for a CA motion 

Assume that the observer is in CA motion. One unique ghost 

exists if and only if O and T are on an RDVR-II. Moreover, its 

trajectory is defined by S

OGX . 

 

Proof: 

First, assume that O and T are on an RDVR-II; that is, 

    0
2

1
00 2  xcOTcOT txtx   and     000  OTcOT yty  . 

 

Any ghost is also on an RDVR-II with the observer. 

Consequently, we have  

0
2

1 2  xcc txtx   and 0 yty c
 . 

 

We deduce that    00 OTcOTc xtxxtx   . Since  0OTxx   , 

we conclude that  0OTxx  , and  0OTyy   and 

 0OTyy   . 

 

We have one unique ghost given by 

         S

OGOTOTOTOT XyxyxX 
T

0000  . 

 

Conversely, assume now that one unique ghost exists. We 

recall that its trajectory is defined by  TyxyxX   and 

that  0OTxx   . 

 

First of all, let us prove that  0OTxx  . Indeed, if  0OTxx  , 

then 0 yy   (otherwise, another ghost exists whose 

trajectory is defined by  TyxyxX   , which is in 

contradiction with the unicity of the ghost). At this point, we 

necessarily have   T000 OTxxX  . Suppose that 

  00 OTy  or   00 OTy . Then, the vector 

        T0000 OTOTOTOT yxyx    defines the trajectory 

of a ghost. Since the ghost is unique, we have 

           TT
0000000 OTOTOTOTOT yxyxxxX  

, which is a contradiction. Hence     000  OTOT yy  . To 

summarize, we have obtained     T0000 OTOTOT xxX  , 

and   T000 OTxxX  . Consequently,  0OTxx  , 
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which is in contradiction with the assumption. Hence, 

 0OTxx  . 

Therefore,    00 OTxQ . Let us develop the expression of 

  0OTxQ  : 

       2

00

2 000 rSrxxxQ OTOTOT   , 

with 

x

rv




2

 and  

    .cossincos22sin2cossin2sin 0

22

00 rrrrr hhhhhS  

 

    

  rrrr

x

r

x

r
OTOT

hhhh
v

r

v
ryxQ

cossincos22sin2cossin

sin00

0

22

0

2

0

2

00

2











 

   

rr

x

r

rr

x

r
OT

hh
v

r

hh
v

ry

cossincos2

2sin2cos1sin0

0

2

0

22
2

00

2











 

  rr

x

r

x

r
rOT hh

v
r

v
hry cossincos22cossin20 0

2

0

2
2

00

2 


 

 

 
 

 
 

   00
0

20
0

20 22

OTOT

x

OT
OT

x

OT
OT yx

y
y

x
y 


  

  
 
 

        0000
0

0
200

2 OTOTOTOT

OT

OT
xOT yxyx

y

y
xQ 


  . 

According to Proposition 3, the target and the observer are on 

an RDVR-II. 

 

QED. 

 

Here, the singularity of the FIM and the unobservability of the 

target’s trajectory are consistent (see Proposition 9). 

 

The following lemma provides us information about the two 

solutions of the quadratic equation   0xQ , introduced in 

Proposition 14. This piece of information will help us to 

identify all the ghost-targets. We recall that  

  2

00

2 rSrxxxQ   , with 

x

rv




2

  and 

 rhS 2sin 0   . 

 

Lemma 4 

The equation   0xQ  has two real roots defined by 

2
1





x  and 

2
2





x , with  

   22

0

2

0 142 SrSr   . Moreover, 

 
2010 xrxr  . 

 

Proof: 

We readily verify that the discriminant of   0xQ  is 

   22

0

2

0 142 SrSr   , which is a positive quantity. 

Hence the two roots are real and are given by 
2

1





x  

and 
2

2





x . Note that 

21 xx  . 

 

We note that    100  SrrQ  , and    100  SrrQ  . 

Hence,   00  rQ  and    00 rQ . We deduce that 

2010 xrxr   and, as a consequence, that 
2x  is 

strictly positive. 

 

QED. 

 

Lemma 4 will conduct our study according to the following 

table: 

 

Table I: Values of  21, xx  

 1x  
2x  

Case 1 01 rx   
02 rx   

Case 2 010 rxr   
02 rx   

Case 3 01 rx   02 rx   

Case 4 01 rx   
02 rx   

Case 5 010 rxr   
02 rx   

Case 6 01 rx   02 rx   

 

Recall that  21 xx  and   0021 rSrxx   . We 

deduce that Case 1 is the only case where 0rv . 

 

Case 1: 
01 rx   and 

02 rx   

The sum of the roots is zero, that is 0  

 0 rv  ; as a consequence,

 T00cossin 0000  rrXOT  . 

 

From (25), for 
1xx   or 

2xx  , we get 0y .  

 

For 
1xx  , from (27), then 

000

2 sin xx rry  , 

or equivalently  00

2 sin1   xry . Hence 

 00 sin1   xry . We get two ghosts, given 

by 

 























00

0

sin1

0

0

 xr

r

X
. If 

2
0


  , then 

these two solutions merge into one: 

  OTXrX 
T

0000
. 

 

For 
2xx  , from (27), then  00

2 sin1   xry . 
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But the right member of this equation is negative or 

null (when 
2

0


  ), whereas the left member is 

positive or null. We get one solution if 
2

0


   : 

  OTXrX 
T

0000
. 

 

In conclusion, in Case 1, if 
2

0


  , we end up with 

three ghosts, whose respective trajectories are defined 

by  

 























00

0

sin1

0

0

 xr

r

X
 and S

OGX . 

If 
2

0


  , we get two ghost-trajectories given by 

























xr

r

X

0

0

2

0

0 . 

The target is observable if and only if 
2

0


  .  

 

Case 2: 
010 rxr   and 

02 rx   

In this case,  0001 rSrrx    and  01 rx . 

Then necessarily, 1S ; that is, 

)2(mod
2

20 


  rh . Note that in this case, 

rh20 sin
2

sin1


 
 and 

rh20 cos
2

sin1


 
. 

 

Since 012  xx , we get 02 0  r . 

 

The root 
1xx   allows us to construct two ghosts: if 

0sin rh , then  

 
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








, with 1 ; else 

 
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








. 

 

 

For 
2xx  , from (27) we get 

 00

2

000

222 sin1sin   xrxxr rvrrvyx  , 

which is equivalent to  

     .sin12cos1
2

sin1cos 00

2

00
222   xr

r
xrr rh

v
rhvy

We have 
0sin2cos rh . So, we get  

   

   

  

  .cos2

sin12
2

1

sin1sin1
2

sin1sin1
2

2

0

00

000

000

2
2

rx

x

x

x
r

hr

r

r

r
v

y




























 

The square 2y  being positive or null and the right 

hand side term being negative or null, we have 

2
0


  . That yields the vector 

 




















0

0

0

0

OTx

r

X


 (which 

is equal to the vector defining the trajectory of the 

target). 

 

In conclusion, in case 2, if 
2

0


  , then we have 

three ghosts; else we have two ghosts (in case 2, the 

target is not observable). 

 

Case 3: 
021 rxx    

In this case, 0  or equivalently 12 S  and 

Sr02 . Because   is negative, we get 1S  

(hence S2 ). 

 

First of all, note that 
2

21 0


  rhS  and 

xr rvr  00 22  . 

 

From (25), we have 0y . Reporting 
0rx   into (27) 

we get 

  00

2

0

22 sin0  xrxOT rvryx    

  xxOTr rrxvy  000

222 sin0    

    xOT ry 00

2 sin10    

 

  

   

   

    
0

sin1sin1

sin1sin1
2

sin12cos1
2

sin1cos

sin1cos

0000

000

00

00

2

00

22













































rr

r

rh

rh

rhv

x

x

rx

rx

xrr

. 

 

Consequently, 0y .  
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We deduce a solution given by 

  T0000 OTxrX  . 

 

We verify that equations (25), (26), (27), and (28) are 

satisfied.  

 

In conclusion, in Case 3, the target is observable if 

and only if 
2

0


    (

2


 rh ). Otherwise, two 

ghosts exist, defined by   T0000 OTxrX   

and S

OGX . 

 

Case 4: 
01 rx   and 

02 rx  . 

As in case 2, we exploit the sum and the product of 

the roots:  0020 rSrxr    and  02 rx . 

Then necessarily, 1S , which is equivalent to 

)2(mod
2

20 


  rh . In this case, 

rh20 cos
2

sin1


 
. 

 

We note that 02 0  r . Again, from (25), we have 

0y . 

 

From (27), we get 

 00

2

000

222 sin1sin   xrxxr rvrrvyx  , 

which is equivalent to 

 

   00

2

00

222

sin12cos1
2

sin1cos









xr
r

xrr

rh
v

rhvy
. We have 

0sin2cos rh . So, we get  

   

   

  

  .cos2

sin12
2

1

sin1sin1
2

sin1sin1
2

2

0

00

000

000

2
2

rx

x

x

x
r

hr

r

r

r
v

y




























,  

which is a positive quantity. 

So, two ghosts exist, defined by

 

  

























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




.  

 

In conclusion, in Case 4, the target is observable if 

and only if 
2

0


   ( 0cos  rh ; that is 

2


rh

). Otherwise, three ghosts exist: 

 

  

























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

Case 5: 
010 rxr   and 

02 rx   

From Eq. (25), 
2

1

2

0 xry  . Introducing this 

value into (26), we get 

   
2

1

2

0

100 0cos

xr

xxhvr
y OTrr









 . This value also 

satisfies Eq. (27) (see Appendix A2). Consequently, 

we obtain the following two solutions: 

 
   































2

1

2

0

100

2

1

2

0

1

0cos

0

xr

xxhvr

x

xr

x

X

OTrr

OT








, with 

1,1  .  

In conclusion, in Case 5, the target is never 

observable. At most, three ghosts exist, given by 

 
   































2
1

2
0

100

2
1

2
0

1

0cos

0

xr

xxhvr

x

xr

x

X

OTrr

OT








, with 

1,1  , and S

OGX .   

This case includes the scenarios where T and O are 

on an RDVR- II.  

 

Case 6: 
01 rx   and 

02 rx   

As in case 2,  0020 rSrxr    and  20 xr . 

Necessarily, 1S  and 
02 rx   . The equality 

1S  is equivalent to 
2

20


  rh .  

 

The assumption 
02 rx   implies that 02 0  r ; 

hence 
xr rv 02 . 

 

The component y  is then readily computed: 

  00 sin12
2

1
  ry x



  rx hr 2

0 cos2  .  

 

From (25), we get 0y . So, two solutions exist, 
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defined by

 

  























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




. The 

equations (25), (26), (27), and (28) are verified. 

 

In conclusion, in Case 6, the target is observable if 

and only if 
2

0


 

2


 rh .  

 

Else three ghosts exist and their trajectories are 

defined by 

 

  























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

Table II: Summarized results of observability in ROTMA 

 

Necessary condition to have ghosts 

0  

(Observability 

case: RDVR-I) 

1 2 3 

Case 1 
2

0


   never 

2
0


   

2
0


   

Case 2 never never 
2

0


   

2
0


   

Case 3 
2

0


   never 

2
0


   never 

Case 4 
2

0


   never never 

2
0


   

Case 5 never RDVR-II never Not RDVR-II 

Case 6 
2

0


   never never 

2
0


   

 

The content of Table II is consistent with Propositions 14, 15 

and 16.  

At this point, we can propose the following algorithm to 

construct (if existing), all the ghosts from a set of noise-free 

measurements  Krrr ,,, 21  , with 
kr the range at time 

kt : 

If rtrtr kxkk
 0

2

2

1
 ,  or rtrtr kxkk

 0

2

2

1
   and 

xrr 0

2 2 , then the trajectory of the target is observable and 

we compute the state vector by minimizing the criterion 

  




K

k

kk rXtr

1

2
,  w.r.t. X . 

If not, we compute one of the vectors X  (it is not unique since 

the trajectory of the target is not observable) that minimizes

  




K

k

kk rXtr

1

2
, , then we choose this vector as the state 

vector of the target of interest (of course in reality, this choice 

can be wrong); this choice provides us with the corresponding 

polynomial function  xQ  and its two roots. Finally, we 

compute the other solutions X  by exploiting the above 

analysis (we only have to identify in which case we are). Of 

course, we are unable at the end to separate the wheat from 

the chaff, that is, to identify the state vector of the true target 

among the ghost-targets. 

 

4) Examples  

 

In this paragraph, we give one example for each case. In the 

following scenarios, the observer has the same trajectory: at the 

very beginning, it starts from  T00  
with an initial velocity of 

 T210 m/s. Its acceleration is the constant vector 

 T00416.0 (m/s2). The duration of the scenario is equal 

to 6 min ( 360fT s). The observer’s trajectory is hence the 

same as in Section III. C. (as shown in Fig. 6). 

 

In the next figures, the trajectories of the observer and target are 

shown by thick lines, whereas those of the ghosts are shown by 

thin lines. The capital letters (“O” for observer, “T” for target, 

and “G” for ghost) designate the moving objects.  

 

a) Example of observable case (case 1) 

 

The target starts at  T04000  (m) with a velocity of 

 T210 (m/s). The observer and the target are on an RDVR-I, 

since   2

0
2

1
trtr x  (Proposition 4 is satisfied). Fig. 8. 

depicts the scenario. 

 

 

 
Figure 8. Observable case in ROTMA, RDVR-I. 

 

b) Examples of unobservable cases  

 

The following example corresponds to case 5 with a RDVR-II. 

The target starts at  T40003000  (m) with a velocity of 

 T76  (m/s). We can readily verify that 
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  75.00023.0tan  tt  thanks to Proposition 5. The 

observer and the target are on a rendezvous route of type II. We 

can see in Fig. 9. that one ghost exists, and it is in a rendezvous 

route with the observer (see Proposition 16). 

 

 

 
Figure 9. Unobservable case in ROTMA, RDVR-II. 

 

The next example corresponds to case 2. 

The target starts at  T04000  (m) with a velocity of  T225

(m/s). We can check that   tttr x 154000
2

1 2   , but 

   3332225 0

2  xrr  . Consequently, the observer and 

the target are not on a rendezvous route from Proposition 4. The 

bearings are constant (their value is 90°), two ghosts exist, as 

announced in Table II (See Fig. 10). Note that if the role of T 

and G1 (for example) are inverted (G1 becomes the target and T 

becomes a ghost), then this scenario corresponds to case 3: 

actually the polynomial function  xQ  is not the same (see eq. 

(A6) in the proof of Proposition 14). The bearings of this new 

target are not constant, but two ghosts only exist. 

 

 
Figure 10. Unobservable case in ROTMA, with constant 

bearings and no rendezvous route. 

 

The last example offers a scenario for which three ghosts exist. 

It corresponds to case 5. 

The target starts at  T34642000  (m) with a velocity of 

 T3.166.14 (m/s). The observer and the target are not on a 

rendezvous route and the bearings are not constant. Three ghosts 

exist (the maximum number of ghosts), as depicted in Fig. 11. 

 

Figure 11. Unobservable case in ROTMA, general case (no 

rendezvous route and non-constant bearings). 

 

V. CONCLUSION 

In the present paper, the results of the observability analysis in 

ROTMA started in [13] for a target in constant velocity 

motion and an observer moving leg by leg, have been 

extended to a smooth observer’s maneuver (constant turn 

motion and constant acceleration motion). 
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When the observer is in CT motion (see for example [1] and 

[4] in BOTMA and [14] and [15] in ROTMA), observability is 

guaranteed in BOTMA and in ROTMA as well. If a part of the 

displacement of the observer is in an arc of a circle, this 

conclusion remains valid.  

When the observer is in CA motion, observability in BOTMA 

is guaranteed if the observer and the target are not in an 

RDVR and the bearings are not constant. In ROTMA, if they 

are in an RDVR and the bearings are constant, the trajectory 

of the target is observable. This proves that even if the 

observer kinematic is of an order greater than the kinematic of 

the target, observability is not guaranteed. This is not in 

contradiction with [5], whose authors established a necessary 

(but non-sufficient) observability condition in this case for 

BOTMA. When the target is not observable, in ROTMA, the 

set of ghost-targets is finite; we give the way to construct them 

from noise-free measurements and we end up with three 

ghost-targets at most. In BOTMA, the set of ghost-targets is 

uncountable. Measurement-based criteria that allow it to be 

known whether or not the target is observable are also given.  

To summarize, unlike what we established in [13] (the 

observer trajectory was composed of several legs), that is, that 

the target is bearings-only observable if it is range-only 

unobservable and the converse, for the two types of smooth 

maneuvers considered here, this duality is not verified. All our 

results are summarized in the following Table: 

 

Table III: Synthetic results about observability 

Observer’s kinematics BOTMA ROTMA 

CT Yes Yes 

CA: RDVD-I No Yes 

CA: RDVD-II No No  

CA: constant bearings No No  

CA: others Yes No 

 

 

We extended in BOTMA our analysis when the observer’s 

trajectory is composed of a CA motion followed by a CV 

motion (and inversely): arguing fundamental properties, we 

proved that if the bearing rate is non-null, the target is 

observable. 

Despite the rank equality of the FIMs in ROTMA and 

BOTMA (see [13]), the statuses of observability in ROTMA 

and in BOTMA are not necessarily the same. Even if this 

result is surprising, it is consistent with the theory (see for 

example [8]): the existence of a linear form of the BOTMA 

problem explains: (i) the equivalence between the regularity of 

the FIM and observability and (ii) the unaccountability of the 

set of ghost-targets in non-observable situations. Conversely, 

in ROTMA, in the case of non-observability, the FIM can be 

singular or not and the set of ghost-targets is finite. This is a 

proof that the problem of ROTMA cannot be expressed under 

a linear form (otherwise the set of ghost-targets would be a 

linear subspace and hence uncountable).  

Obviously, we do not claim to have achieved a complete study 

of observability in ROTMA; for example, the cases when the 

observer’s trajectory is composed of a CA motion followed by 

a CV motion, or when the motion of the observer is 

polynomial of order greater than two, or when the observer 

does not maneuver whereas the target does (which we studied 

in BOTMA in [2] and [9]), and so on must be investigated. 

Our study can help as a basis. 

 

The next step (and paper) concerning ROTMA is the 

estimation, when the measurements are polluted by an additive 

noise. The observability analysis presented here will allow us 

to anticipate several difficulties: (i) thanks to the given 

criteria, we will be able to construct a statistical test to decide 

whether the observer and the target are on a rendezvous route 

or not. (ii) Moreover, for a given solution, we will construct 

the set of ghost-targets in the case of a lack of observability. 

(iii) Finally, an initialization of any numerical routine 

(necessary to compute the maximum likelihood estimate of the 

state vector), based on this analysis, can be proposed. 

 

APPENDIX 

 

A. Proof of Proposition 14 

 

We exploit here the four equations of Lemma 3. In order to 

render the proof lighter, we drop the subscript T in 
Ta , 

Tb and 

Tc  defined in (24): 2

0ra ,   rr hvrb  00 cos  , and 

00

2 sin xr rvc  . 

From (28), we have  0OTxx  . Reporting this first result into 

(27), we get   .0 22 cxyx xOT    Then, multiplying both 

sides of this equation by 2y , we get 

  222222 0 cyyxyyxy xOT   .           (A1) 

From (26), we know that   222 0OTxxbyy   . Inserting this 

into (A1), we get 

    22222 0 cyyxxxbxy xOT   .    (A2) 

 

Finally, using Eq. (25), we replace 2y  by 2xa   in (A2), and 

we end up with the following equation: 

          22222 00 xacxaxxxbxxa xOTOT   .    (A3) 

 

The cubic equation (A3) has at most three real roots (one of 

them is  0OTx ).  Let us denote the three solutions as 

 2,1,0ixi
 (in some cases, only one or two roots exist). 

For convenience, the root  0OTx  will be denoted 
0x . 

 

To compute the two other roots, we first develop (A3): 

        0cst0200 2223  xOTOTOTx axbxcxxxx  

 

   0cst0223  xOTx axbxcxx   .       (A4) 

 

Since 
0x  is a root, we have 

   0cst020

2

0

3

0  xOTx axbxcxx   .      (A5) 

The difference (A4) – (A5) is 

         0020

2

0

23

0

3  xOTx axbxxcxxxx   ,     

or, equivalently, 
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          00200

2

0

2

0  xOTx axbcxxxxxxxx   .     

(A6) 

 

Dividing (A6) by  0xx , we get 

       00200

2

0

2  xOTx axbcxxxxxx      (A7), 

which is a quadratic equation. 

 

Rearranging the terms of (A7), we end up with 

     0020

2

00

2  xOTxxx axbcxxcxxx    

or equivalently  

  0020
0

02 













 ax

bcx
x

cx
xx OT

xx

x

x

x 






 . 

 

Now, we replace the terms ,, ba  and c  by their respective 

values. The equation to be solved is hence  

  0sincos2sin 2

00

2

00

2

0

2
2  rhh

v
r

v
r

v
xx rr

x

r

x

r

x

r 





   0sincos2sin 2

000

2

0

2
2  rhh

v
r

v
xx rr

x

r

x

r 


  02sin 2

00

2

0

2
2  rh

v
r

v
xx r

x

r

x

r 


.  

 

QED. 

 

B. Case 5: Compatibility of Eqs. (26) and (27) 

 

We start this proof with two useful lemmas. 

 

Lemma L1:      0cossin2sincos 2
000

2  rrr hhh  . 

 

Proof:  

   rr hh 22cos
2

1

2

1
cos 00

2    

    rrr hhh 2cos22cos
2

1
sin2sin 000    

rr hh 2cos
2

1

2

1
cos2   

 

Hence,     0cossin2sincos 2
000

2  rrr hhh   

 

QED. 

 

Lemma L2: If 1x  is a root of  xQ , then 

Srxxr  01

2

1

2

0   

 

Proof:   

  2

00

2 rSrxxxQ    with 

x

rv




2

 and 

    rrr hhS sinhcos2sin2sin 000    

 

As 
1x  is a root of  xQ , we have 

  02

001

2

11  rSrxxxQ  . 

 

Hence, Srxxr  01

2

1

2

0  . 

 

QED. 

 

Now, we are able to prove that 

   
2

1

2

0

100 0cos

xr

xxhvr
y OTrr









  satisfies (27); that is, 

 001

222 sincos  rxhvy xrr  . 

 

To do this, we compute the difference 

     001

22

2

2

1

2

0

100 sincos
0cos




rxhv
xr

xxhvr
xxrr

OTrr 
















 

 

or equivalently  

    

   Drxhvxr

xxhvr

xxrr

OTrr





001

222

1

2

0

2

100

sincos

0cos



 
. 

 

First of all,  

    

   

   rrOT

OTrr

OTrr

hvrxx

xxhvr

xxhvr







001

22

10

222

0

2

100

cos02

0cos

0cos












  

 

  rrr

rrrr

hhvrx

hvxhvr

sincos2

sincos

0

2

01

222

10

222

0








 

   0

2

01

222

10

222

0 sinsincos   Svrxhvxhvr rrrrr
    (A8) 

Now we compute   001

222

1

2

0 sincos  rxhvxr xxrr  . We 

use Lemma L2: Srxxr  01

2

1

2

0  . 

 

Hence,  

  
  001

22

01

001

222

1

2

0

sincos

sincos





xxrr

xxrr

rxhvSrx

rxhvxr




 

                00

2

1

222

01 sincos  rvxvhvSrx rrrr   

                         

  0

22

0

22

01

0

2

01

2

01

2

1

2

sincos

sin





SvrhvSrx

vrxSvrxxv

rrr

rrr




 

    0

22

001

22

0

2

01

2

1

2 sincossin  SvrSrxhvSvrxxv rrrrr 

   (A9) 

 

We end up with D (A8) – (A9), that is,  
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But, again from Lemma L2, we have  2

001

2

1 rSrxx   . 

We simplify (A10) and we get 

  0
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0 sincoscos  SvrhvrhvrD rrrrr   

    00

2

0

222

0 sin2sincoscos  rrrr hhhvr  . 

 

Using Lemma L1, we conclude that 0D . 

 

QED. 
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