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 

Abstract— Range-only target motion analysis (ROTMA) 

consists of estimating the trajectory of a target using a single 

platform collecting range-only measurements. Observability 

analysis is carried out when the target is in constant-velocity 

motion and the observer maneuvers gently (a constant turn 

motion or a constant acceleration motion). We compare 

observability in bearings-only target motion analysis (BOTMA) 

and ROTMA throughout the paper, together with the rank of the 

Fisher information matrix. In each case, we establish necessary 

and sufficient observability conditions and we identify the virtual 

(or ghost) targets giving the same measurements when the system 

is not observable. 

 

 
Index Terms— Target motion analysis, tracking, range-only, 

bearings-only, observability, Fisher information matrix, constant 

turn motion, constant acceleration motion. 

  

I. INTRODUCTION  

HIS PAPER presents the second part of the observability 

analysis in range-only target motion analysis (ROTMA), 

started in a previous paper [13]. The target (or source) was 

assumed to be in constant velocity (CV) motion. The previous 

paper [13] provided the following results: 

The Fisher information matrices (FIMs) in BOTMA and in 

ROTMA have the same rank when the source is in CV 

motion, whatever the trajectory of the observer. 

Secondly, when the observer is zigzagging, with constant 

speed on each leg, the trajectory of the source is observable in 

ROTMA if and only if it is unobservable in BOTMA. We 

proved this happens when and only when the bearings are 

constant. In this case, the FIM is singular, whereas in 

ROTMA, the target’s trajectory is observable. Conversely, 

when the trajectory of the target is observable in BOTMA, it is 

unobservable in ROTMA.  

At this point, a prior question must be asked: are these 

antinomic observability conditions in BOTMA and in 

ROTMA maintained for other observers’ maneuvers? Some 

answer elements are given in the present paper for two types 

of smooth maneuvers of the observer: a constant turn (CT) 
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motion or a constant acceleration (CA) motion and a 

combination, CA-CV (for BOTMA only) and CT-CV. 

Note that generalizing this comparison is difficult because, 

unlike in BOTMA, general necessary and sufficient 

observability conditions do not exist in ROTMA: indeed, 

when the observer maneuvers, this problem cannot be 

expressed by a linear system, whereas in BOTMA, a linear 

system can be exhibited [3, 11, 16]. In ROTMA, for each 

observer’s kinematics, a specific study of observability must 

be conducted.  

Our strategy of analysis is the same as in [13]: we start with 

BOTMA, we deduce the rank of the FIM, and finally, we 

study the observability of the target in ROTMA (under the 

same conditions). 

We will prove that when the observer is in CT motion, the 

target is observable in BOTMA and in ROTMA as well. In 

this case, the FIMs are of full rank (no antinomy). When the 

observer is in CA motion, several situations can occur: the 

target can be observable in ROTMA and the FIM can be of 

deficient rank, or the target can be unobservable in ROTMA 

and the FIM can be of full-rank or deficient rank. 

When the trajectory of the target of interest is not observable, 

a set of ghost-targets exists, which misleads the operator when 

he or she tries to estimate the state vector. This problem also 

occurs when associating multi-tracks between several arrays 

[6]. Therefore, in BOTMA, the observer must maneuver in 

order to render the trajectory of the target observable. 

Unfortunately, some maneuvers are ineffective [7] [12]. Here, 

we give some examples of ineffective maneuvers in ROTMA. 

 

The paper is organized as follows: 

In Section II, the problem and the ad-hoc notations are given. 

The notion of observability is recalled and the models of the 

two types of trajectories of the observer are given, as well. We 

introduce the notion of a rendezvous route (and the associated 

criteria), which will play a crucial role in the analysis of 

observability when the observer is in CA motion. 

In Section III, observability in BOTMA is analyzed when the 

observer is in CT motion, in CA motion, and in CA motion 

followed by CV motion or the converse. For each kinematic, 

we give necessary and sufficient observability conditions. The 

set of ghost-targets is characterized in the scenarios where the 

target is unobservable.  

Section IV is devoted to ROTMA: we start by revisiting the 

situations in which the observer is in CT motion and then in 

CA motion. For each of them, we give necessary and 

sufficient observability conditions. In unobservable cases, we 

identify the set of ghost-targets. Illustrative examples are 
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given. 

The conclusion follows. 

 

II. GENERAL NOTION AND NOTATIONS 

A. Definitions and notations 

A target (T) and an observer (O) move in the same plane, 

given a Cartesian system. The target has a CV all along the 

scenario, while the observer maneuvers (here, the term 

“maneuver” is employed when the observer is not in CV 

motion). The scenario starts at time 0t  and finishes at time 

fTt  .  

For the observer, the position and velocity at time t are 

respectively    T)]()([ tytxtP OOO   and 

 
  T)]()([ tytx

dt

tdP
tV OO

O

O
 . Both are concatenated into the 

vector       TtytxtytxtX OOOOO
)()( . 

 

For the target, the notations are similar:   T)]()([ tytxtP TTT  , 

  T][ TT
T

T yx
dt

tdP
V  , and    TTTTTT yxtytxtX )()( . 

In the sequel,  0TX  will be simply denoted as 
TX , which 

entirely defines the target’s trajectory. Obviously, 

    TTT VtPtP  0 .  

We will assume that      fOT TttPtP ,0,  . 

The motion of the target relative to the observer is given by 

      T)]()([ tytxtPtPtP OTOTOTOT   and by 

 
  T)]()([ tytx

dt

tdP
tV OTOT

OT
OT

 . The relative velocity 

vector. We define the vector 

          TtytxtytxtXtXtX OTOTOTOTOTOT
)()( . 

 

All the angles are clockwise-positive. Subsequently, we will 

use the symbol   to designate angles: for any pair of vectors 

U  and W ,  WU,  is the angle defined by the couple  WU,  

referenced to U . When U  is collinear to the northward 

direction, we will use W only (for the bearing or heading). 

 

The range and the bearing at time t  are given respectively by 

   tPtr OT  and    tPt OT . So,    
 

 








t

t
trtPOT





cos

sin ; that 

is,        

       







tyttrty

txttrtx

OT

OT





cos

sin . 

 

Subsequently, we will use the following simplified notations: 

 00   ,  00 rr  ,   0OTr Vv  , and  0OTr Vh   for the 

initial bearing, range, relative speed, and heading. For 

convenience, )0(OTX  will be denoted simply 
OTX . 

 

Figure 1 displays a typical scenario. 

 

 
 

Fig. 1. Typical scenario of TMA. 

 

B. Observability notion 

We extend the previous notation to emphasize this 

dependence:  t  and  tr  can be denoted  OTXt ,  and 

 OTXtr , . 

 

We recall that the target’s trajectory is declared observable in 

BOTMA if the following statement is true: 

      OTOTf XXXtXtTt  ,,,,0  . Otherwise, 

the trajectory is said to be unobservable: at least, one vector 

 TOGOGOGOGOG yxyxX )0()0( (defining a CV motion) 

different from 
OTX  exists such that 

     fOTOG TtXtXt ,0,,,  . 

 

Similarly, in ROTMA, the observability definition is 

      OTOTf XXXtrXtrTt  ,,,,0 . Otherwise, 

again, at least one vector  TOGOGOGOGOG yxyxX )0()0(
 

different from 
OTX  exists such that    OTOG XtrXtr ,,  . 

 

The vector 
OOGG XXX   defines the “virtual” trajectory of 

a “ghost-target”, denoted G. We define similarly 

      T000 GGG yxP  , T][ GGG yxV  , 

    T)]()([0 tytxVtPtP GGGGG  , and 

   TGGGGG yxtytxtX )()( , with the convention 

 0GG XX  .  

 

Note that, depending on various circumstances, the set of 

“ghosts” is finite or can be a family (an uncountable set). 

 

Observability analysis has two aims: 

a) Give a necessary and sufficient condition to have 

unicity of the state vector 
OTX . 

b) When this condition is not satisfied, characterize the 

set of  
OGX . 

This will conduct our paper. 

 

 

Target 

Observer 

North (y) 

East (x) 

Observer’s 

heading 

Bearing : (t) 

Range : R(t) 

Target’s heading 
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C. Observer kinematic models 

As announced in the introduction, two models of smooth 

observer motion are considered in this paper: in the first, the 

observer travels in an arc of a circle at constant speed, and in 

the second, it has a constant acceleration vector. 

 

1) CT motion 

The observer turns around a fixed point 










C

C

C
y

x
P  at range 

0 , with a constant turn rate 0  (positive if the motion 

of the observer is clockwise) and an “initial angle”   relative 

to north, at the beginning of its motion. Its speed is constant. 

As a consequence, at time t  (recall that the initial time is equal 

to 0), the location of the observer is given by  

 
 
 

















t

t
PtP CO

cos

sin (see Fig. 2). In order to simplify 

the coming calculation, we will assume that 










0

0
CP . 

 
Figure 2. Typical scenario when the observer is traveling 

in an arc of a circle. 

 

2) CA motion 

The position of the observer at any time t  is 

      
2

00
2t

VtPtP OOO
,  where  0OV  is the initial velocity 

and  Tyx  is the (non-zero) acceleration vector. The 

relative position of the target with respect to the observer is 

      
2

00
2t

VtPtP OTOTOT
   (1) 

Without loss of generality, we will assume that 0x  and

0y . Indeed, a suitable rotation of the entire scenario 

allows us to be in this case.1 This assumption will make easier 

the following observability analysis. 

 

 

1  The matrix of this rotation is 













sincos

cossin

. 

D. Rendezvous routes in CA motion 

 

The observability criteria when the observer is in CA motion 

will be shown to be linked to the rendezvous (or collision) 

route in Sections III. C. (BOTMA) and IV. B. 2. (ROTMA). 

 

Definition: the rendezvous route 

The target and the observer are said to be on a rendezvous 

route (RDVR), when they are in the same place at a time ct . 

 

Actually, this rendezvous instant is purely virtual: before  

0t  and after 
fT , O and T were and will be free to choose 

their own trajectories. Note that this motion model is not the 

pursuit curve motion, which has not been studied in the TMA 

observability problem, from our knowledge. 

 

1) The two types of RDVR 

 

Proposition 1: General properties of RDVR 

If O and T are on an RDVR, then 

- Either  0OTP ,  0OTV  and   are collinear, 

- Or   0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear. 

 

Proof: 

O and T collide at ct  if and only if  

   

   
















)3(000

)2(0
2

1
00 2

OTcOT

xcOTcOT

yty

txtx



 
 

If   00 OTy , then (3) implies that   00 OTy . The vectors 

 0OTP ,  0OTV  and   are collinear. 

 

Else,  
 

0
0

0 
c

OT
OT

t

y
y . In other words,  0OTP  and   are 

noncollinear, and  0OTV  and   are noncollinear. 

 

QED. 

 

Definition: The two types of RDVR 

The RDVRs are called rendezvous routes of type I (RDVR-I), 

when  0OTP ,  0OTV , and   are collinear. When  0OTP  and 

  are noncollinear, and  0OTV  and   are noncollinear as 

well, the RDVRs are called rendezvous routes of type II 

(RDVR-II). 

 

Note that for the RDVR-II,  0OTP  and  0OTV  can be 

collinear. Fig. 3 and Fig. 4 depict an example of RDVR-I, and 

of RDVD-II, respectively. We can notice that the bearings are 

constant for the RDVR-I whereas they change in time for the 

RDVR-II. We will see why and how subsequently.  
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Figure 3. Example of RDVR-I. 

 

 

 

 
 

Figure 4. Example of RDVR-II. 
 

The converse of Proposition 1 is given in the following two 

propositions. 

 

Proposition 2: Condition of RDVR-I 

Assume that  0OTP ,  0OTV  and   are collinear; that is, 

  0OTP  (with 0 ) and    0OTV . O and T are on an 

RDVR if and only if   22  . 

 

Proof: 

O and T are on an RDVR, if and only if  

    0
2

1
00 2  xcOTcOT txtx   (we do not have any equation with 

the y-component since 0y ). This equality is equivalent to 

0
2

1 2 







 xcc tt   or 0222   cc tt . 

 

Hence, O and T are on an RDVR if and only if the equation 

0222   tt  has one or two real roots (one of them is
ct ), 

that is, if and only if the discriminant  22   is positive.  

 

QED. 

 

Obviously, the assumption “  0OTP ,  0OTV  and   are 

collinear “ is not sufficient to characterize an RDVR-I, but 

implies that the bearings are constant. Conversely, if the 

bearings are constant, the target and the observer are not 

necessarily on an RDVR-I. 

Let us note that in this case, the bearings are piecewise equal 

to 
2


 , and Proposition 2 remains valid up to a rotation, that 

is, for   constantt  up to 
ct . Note also that two rendezvous 

instants may exist (depending on  ). In Fig. 5, an example of 

such a situation is given: The target starts at  T04000  (m) 

with a velocity of  T220 (m/s); the observer starts at 

 T00  (m) with a velocity of  T210 (m/s) and its 

acceleration vector is    T00416.0       2m/s  . 

 
Figure 5. Example of RDVR-I where the target and the 

observer have two RDVs. 
 

 

Proposition 3: Condition of RDVR-II. 

Assume that  0OTP  and   are noncollinear, and  0OTV  and 

  are noncollinear as well. 

O and T are on an RDVR if and only if 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Proof: 

Equation (3) implies that  
 0

0

OT

OT
c

y

y
t


 . Substituting into (2), 
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we get  
 
 

 
 
 

0
0

0

2

1
0

0

0
0

2

2

 x

OT

OT
OT

OT

OT
OT

y

y
x

y

y
x 





. We end up with

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



  

 

QED. 

 

Note that, an unique RDV instant exists for an RDVD-II.  

In the two following propositions, we give a criterion based on 

the measurements (range or bearing), which allows us to know 

which type of RDVR we are on. 

 

2) Criterion of RDVR-I 

 

From the remark following Proposition 2, when the target and 

the observer are on an RDVR-I, the bearings are constant. In 

this case, the trajectory of the target is not observable in 

BOTMA. In ROTMA, we will see that this type of route must 

be considered in the observability analysis (see Proposition 

15).  

The following proposition gives us a criterion of RDVR-I 

based only on range. In practice, when the measurements are 

corrupted by additive noises, it can help to construct a 

statistical test to decide if the two mobiles are on an RDVR-I. 

 

Proposition 4: Criterion on range of RDVR-I 

The target and the observer are on RDVR-I if and only if a 

scalar r  exists such that, for  fTt ,0 , either 

rtrttr x
 0

2

2

1
)(  ,  or rtrttr x

 0

2

2

1
)(    and 

xrr 0

2 2 . 

 

Proof: 

First, assume that the target and the observer are on an RDVR-

I. 

 

From (1), we have 

      xxOTOTOT tt
t

xtxtx  







 2

2

2

1

2
00  , and 

   txtr OT . We denote by 
1t  and 

2t  
(with 

21 tt  ) the roots 

of the equation   0txOT
. Note that they can be the same. 

If    21,,0 ttT f  , then    txtr OT . If 
1tT f  , or 02 t

then    txtr OT . So, we get the result. 

 

Conversely, suppose now that either rtrttr x
 0

2

2

1
)(  , or 

rtrttr x
 0

2

2

1
)(   for  fTt ,0  and 

xrr 0

2 2 . Let us 

prove that the observer and the target are on an RDVR. To 

avoid repetition, we will only consider the case 

rtrttr x
 0

2

2

1
)(   and 

xrr 0

2 2 . 

We have to solve the following equation: 

   
2

2

0

2

2

2

1

2

1
00 








 xOTOT trtrtVtP  . 

 

After developing the left and right expressions and equating 

the coefficients of each power of t, we end up with a system of 

four equations: 

  2

0

2
0 rPOT              (4) 

    rrVP OT

T

OT


000             (5) 

    x

T

OTOT rrPV 0

22
00         (6) 

  x

T

OT rV 0              (7) 

 

In terms of components, they are equivalent to 

    2

0

22 00 ryx OTOT             (8) 

        rryyxx OTOTOTOT


00000       (9) 

      xxOTOTOT rrxyx  0

222 000       (10) 

  xxOT rx   0             (11) 

 

From (11), we get   rxOT
 0 . Substituting into (9) and (10), 

we obtain 

       rrxyy OTOTOT


0000        (12) 

     xOTOT rxy 0

2 00           (13) 

 

Now, from (8), we have  

       00

2 000 rxrxy OTOTOT        (14) 

 

Taking the square of each side of (12), after replacing  02

OTy  

and  02

OTy  with their respective expressions given by (13) and 

(14), we get 

         22

00

2

0 000 rrxrxrx OTxOTOT
  . (15). 

 

Let us examine two cases: 

 

Case 1 :   00 rxOT   

 

Equation (15) is equivalent to   









x

OT

r
rx



2

00
 . 

Substituting into (14), we finally get 

 
xx

OT

rr
ry



22

0

2 20










 .  

 

Consequently, 02
2

0 
x

r
r



 ; that is, 02 2

0  rr x
 . 

But, by assumption, we have 02 2

0  rr x
 . Hence 

02 2

0  rr x
 . (16) 

 

It follows that   00 OTy ; hence   2

0

2 0 rxOT  . We 

conclude that   00 rxOT  . Reporting this value into 

(12), we get 0r . From (16), we have 00 r , which 

is incompatible with the assumption   0tPOT
 for 

 fTt ,0 . This must be discarded. 
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Case 2 :   00 rxOT   

 

From (13) and (14),   00 OTy  and   00 OTy ; that is 

 0OTP ,  0OTV  and   are collinear. With the 

inequality 
xrr 0

2 2  being equivalent to  22  , 

the target and the observer are on an RDVR-I, from 

Proposition 2. 

 

QED. 

 

3) Criterion of RDVR-II 

 

Similarly to ROTMA, BOTMA observability conditions (see 

Proposition 9) need to have a criterion of RDVR-II. 

 

Proposition 5: Criterion on bearing of RDVR-II 

O and T are on RDVR-II if and only if   tt 10tan   , with 

01  . 

The respective values of 
0  and 

1  are  
 0

0

OT

OT

y

x ,  and 

       
 0

0000
2

OT

OTOTOTOT

y

xyxy   . 

 

Proof: 

We have to prove the equivalence 

 
 
 

        0000
0

0
2tan

210 OTOTOTOT

OT

OT
x yxyx

y

y
tt 


 

We have  
   

   00

2

1
00

tan

2

OTOT

xOTOT

yty

txtx

t











 . 

If   tt 10tan    then  

          tytytxtx OTOTxOTOT 10

2 00
2

1
00    . 

As a consequence,  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . We get the equality 

 
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 . 

 

Conversely, if  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 , 

then we readily verify that  
 0

0

OT

OT
c

y

y
t


  is a root of 

    xOTOT txtx 2

2

1
00   . Hence, there are two real numbers

0  

and 
1  such that 

           tytytxtx OTOTxOTOT 10

2 00
2

1
00    . 

 

QED. 

 

To resume, 

the two mobiles are on an RDVR-II

  0and,tan 110   tt ,  

the two mobiles are on an RDVR-I   0tan   t . 

 

It is well known that when the observer is itself in CV motion 

and the bearings are constant, the observer will meet 

eventually the target (the collision instant can equal to infinity 

if the two routes are parallel. To avoid this collision hazard 

well known by sailors, the observer must maneuver. However, 

if it accelerates and if the bearing tangent is linear, it may still 

remain on a rendezvous route. 

 

III. OBSERVABILITY CRITERIA IN BOTMA 

 

Let us recall that in BOTMA, the target trajectory is 

observable if and only if the FIM is nonsingular. We give 

hereafter two general results, necessary to prove observability 

when the trajectory of the target is a combination of CA and 

CV motions (see proposition 11). 

  

A. Two general results 

 

Proposition 6: Observability equivalence between two 

observers in BOTMA 

Let there be two observers measuring the same bearings. If the 

target is observable from one, it will be observable from the 

other (or equivalently, if it is unobservable from one, it will be 

unobservable from the other). 

 

Proof: 

We recall that BOTMA has a linear version, whatever the 

trajectory of the ownship. Indeed, the noise-free measurement 

equation  
   
   










 

tyyty

txxtx
t

OTT

OTT





0

0
tan 1  can be transformed 

into the linear equation 

        
         NOO

T

tttttyttx

Xtttttt

,,,sincos

sincossincos

1 







 
or, in short,   ZXT A , where the k-th line of  A  is 

        kkkkkk tttttt  sincossincos  , and the k-th 

element of Z  is        kkOkkO ttyttx  sincos  ; see [3, 11, 16]. 

The observability is hence brought by the set     Ntt  ,,1  , 

which means that if two observers collect the same set 

    Ntt  ,,1  , if the target is observable from one, it will be 

observable from the second one. In this case, the state vector is 

computed by      ZXT

1
  AA

T . 

 

QED. 

 

Proposition 7: Observability equivalence for time-reversed 

bearings 

Let there be two observers #1 and #2. Observer #2 measures the 

same bearings as observer #1, but in the inverse temporal 

order, that is 
     kNk ttt  12  , where 

  ki t  is the bearing 

measured at time kt  by observer #i. If the target detected by 
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observer #1 is observable, then the target detected by observer 

#2 will be, and the converse. 

 

Proof: 

Let us define the matrix 
  iA  whose k-th line is 

            kikkikkiki tttttt  sincossincos  . Let us 

prove that 
       21 RankRank  AA  . We note that the  k-th 

line of 
  2A  is  

            

            kNkkNkkNkN

kkkkkk

tttttttttt

tttttt





1111

2222

sincossincos

sincossincos





 
 

We construct a third matrix denoted A
~

 by permutation of the 

lines of 
  2A , that is, the first line of A

~
 is the N-th line of 

  2A , the second line of 
  2A  is the (N – 1)-th of 

  2A , 

and so on. In other words, we flip the matrix in the up/down 

direction. Obviously,      2Rank
~

Rank AA  . We note that 

the first two columns of A
~

 are the first two columns of 
  1A . 

The third (resp. fourth) column of A
~

 is Nt  
multiplied by the 

first (resp., second) column of Nt , minus the third (resp., fourth) 

column of 
  1A . Hence,      1Rank

~
Rank AA  . 

Consequently, 
       12 RankRank  AA  . We readily 

deduce that 
             2211 RankRank  AAAA

TT  . 

 

QED. 

 

Note that these properties cannot be extended for any 

measurements such as frequency measurements because the 

Doppler effect is not time-reversible.  

 

B. Observer in CT motion 

 

The CT motion was defined in Section II.C.1. We propose the 

following result when the noise-free bearings are continuously 

available during  fT,0 . 

 

Proposition 8: Observability in BOTMA for CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable in 

BOTMA. 

 

Proof: 

Suppose that a ghost (G) moving in CV motion is detected in 

the same bearings as the target for any  fTt ,0 . 

 

The equality      tPtPt OGOT   is equivalent to

     tPtktP OTOG   for certain   0tk  

            fOTOG TttPtPtktPtP ,0,   

          tPtktPtktP OTG 1  

         
 

 

















t

t
tkVtPtkVtP TTGG

cos

sin
100  

  1 tk . 

 

In other words, no such ghost exists: the trajectory of the 

target is hence observable. 

 

QED. 

 

Note that if the observer’s trajectory contains at least one arc 

of a circle, then the trajectory of any target having a constant 

velocity is observable in BOTMA. 

 

C. Observer in CA motion 

 

Proposition 9: Observability criterion in BOTMA for CA 

motion 

Assume that the observer is in CA motion. 

The target’s trajectory is observable in BOTMA if and only if O 

and T are not on an RDVR and the bearings are not constant. 

 

Proposition 10: Set of ghosts in BOTMA for an RDVR-II 

Assume that the observer is in CA motion. 

The target’s trajectory is unobservable if and only if 

  tt 10tan   . 

 If 01  , the target and the observer are on a RDVR-II and 

the ghosts are on a RDVR-II with the observer. Their 

trajectories are defined by        00 TG XX , where   is 

a scalar and   is a vector in the null space of the matrix 

   
     

 



























1000

00
2

0

0000

0000

OT
x

OTOTOT

OTOT

y

yxy

xy






. The values of 
0  and 

1  

are given in Proposition 5. 

If 01  , the trajectories of the ghosts are defined by 

    Ξ 00 TG XX , with  T00 21  Ξ , for any 
1 and 

2   such that 021  . 

 

Proof of the two previous propositions: 

 

We have to solve the equation    OTXtXt ,,   . Since the 

implication 

       OTOT XtXtXtXt ,tan,tan,,    holds, we 

concentrate our effort on the equation 

   OTXtXt ,tan,tan   . We define the components of X

by  Tyxyx  . 

 

Two cases must be studied: 

 

Case (1):   00 OTy  or   00 OTy . 

     OTXtXt ,tan,tan 
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   

   00

2
00

2

22

OTOT

xOTOTx

yty

t
xtx

yty

t
xtx
















 
, for any t  in  fT,0 . 

    

     yty
t

xtx

yty
t

xtx

xOTOT

OTOTx





























2
00

00
2

2

2

,  fTt ,0 . 

 

After reordering the terms of this equation, we get 

   
       

     

 



















0

0
2

0
2

0

0000

00

OT

OT
x

OT
x

OT

OTOTOTOT

OTOT

yy

yxyyyx

xyxyyxyx

xyyx








 

 

We end up with the system  
)( BXM  

with 

   
     

 





























1000

00
2

0

0000

0000

OT
x

OTOTOT

OTOT

y

yxy

xy




M

 and 

   

     

  






















0

0
2

00

00

0

OT

OT
x

OTOT

OTOT

y

yyx

yx
B








 

 

We note that 
OTX  is a solution of )( .  

 

The vector 
OTX  is the unique solution of )(  if and only if 

  0det M , in other words, the trajectory of the target is 

observable. Conversely, the trajectory of the target is not 

observable if and only if   0det M . Consequently, the 

discussion is about  Mdet .  

 

We readily get 

               xOTOTOTOTOTOT yyxyyx 0
2

1
00000det 22  M . 

 

If   0det M , we have to discriminate the subcase where 

  00 OTy  from the subcase   00 OTy . 

 

If   00 OTy , then   00 OTx . The case   00 OTx  means that 

the target and the observer are co-localized at the initial time. 

This does not satisfy the assumptions given in II A. This case 

is hence discarded.  

 

If   00 OTy , then  
 

        0000
0

0
2

2 OTOTOTOT

OT

OT
x yxyx

y

y



 ; 

that is, the observer and the target are on an RDVR-II (cf. 

Proposition 3). Since the acceleration 
x  is not equal to zero, 

 0OTy  cannot be equal to zero. As the consequence, the first 

two columns of M are not collinear. We remark also that the 

fourth column of the matrix M  cannot be simultaneously 

collinear with another one, so the rank of M is equal to 3. 

The set of solutions of )(  is the set of the vectors defined by 

 OTOG XX , where   is a scalar and 

 T0321   is a nonzero vector in the null space of 

M .  We verify that  t  has a special form: 

   tt 10

1tan    , with  
 0

0
0

OT

OT

y

x
  and 

       
 0

0000
21

OT

OTOTOTOT

y

xyxy  
 . 

 

Note that 
   

   
t

yty

t
xtx

OGOG

xOGOG

10

2

00

2
00












 is equivalent to 

          00
2

00 10

2

OGOGxOGOG ytyt
t

xtx    . 

 

Hence, at time   
 

 
 0

0

0

0

OT

OG

OG

OG
c

y

y

y

y
t


  (which depends on the 

relative coordinate  0OGy  of the considered ghost), we get 

  0cOG tx  and   0cOG ty . As a consequence, all the 

ghosts and the observer are on an RDVR-II (but at different 

times of rendezvous). 

 

Case (2):   00 OTy  and   00 OTy ; that is,    0,0 OTOT VP  and 

  are collinear. Note that  

O and T are not necessarily on an RDVR-I. 

Then    
2

,,


  OTXtXt   0 yty  ; that is, 

0 yy  . 

The bearing rate is zero and the set of solutions is the line of 

sight of the target: any ghost traveling in this line (the X-axis) 

is detected in the same (constant) bearing 









2

  as the target 

of interest. The target’s trajectory is not observable. 

 

QED. 

 

D. Observer in CV and then CA motion and the converse 

 

Observability must be studied only when the target is not 

observable during the CA motion of the observer, that is, 

when O and T are on an RDVR of type II or the bearings are 

constant. To do this, we need the notion of an “angle-

equivalent non-maneuvering observer” [7] and [12] when O is 

in CA motion; the existence of a virtual observer (E) in CV 

motion continuously collecting the same bearings as the 

observer will be proved in the sequel. 

 

In the rest of the paragraph, we will assume that 

  tt 10tan    (during the CA motion only). 
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Lemma 1 

If the observer and the target are on a rendezvous route of 

type II or the bearings are constant, then a virtual observer, 

located at  0OP  at time 0t , in CV motion, continuously 

collecting the same bearings as the observer, exists. 

Proof: 

We denote in this proof the initial position and the velocity of 

a virtual observer in CV motion by 

           TT
00000 OOEEE yxyxP   and  TEEE yxV  , 

respectively. 

 

If the bearings are constant, then     000  OO yy  . The virtual 

observer (in CV motion) such that    00 OE PP   and  0OE VV   

collects the same bearings as O. 

 

If O and T are on a rendezvous route of type II, suppose that a 

virtual observer E in CV motion exists. The equality 

 
 
  












 

ETOT

ETOT

yty

xtx
t





0

0
tan 1  implies that 

 
 

t
yty

xtx

ETOT

ETOT
10

0

0
 







 . Consequently 0ETy , and 

  1
0


OT

ET

y

x . Since        
 0

0000
21

OT

OTOTOTOT

y

xyxy  
  (see 

Proposition 10), we get     
 
 0

0
00

OT

OT
OTOTET

y

x
yxx   . We end 

up with  
   

 
 






















T

OT

OT
OTO

E

y

y

x
yx

V




0

0
00

. Note that this virtual 

observer is unique. 

 

QED. 

Hereafter, we propose an example of a scenario where the 

observer has a higher order dynamic than the target and the 

target’s trajectory still remains unobservable. We have chosen 

a scenario with an RDVR-II (hence satisfying Proposition 3):  

   

  )m/s(]76[and,)m(]40003000[0

,)m/s(]210[0,]00[0

TT

TT





TT

OO

VP

VP   

with 0416.0x  m/s2. The duration is 6 minutes. Figure 6 

depicts the maneuvering observer together with the target 

(thick lines) and four ghosts (thin lines). Moreover, the 

trajectory of the virtual observer E is plotted. Four lines of 

sight are given.  

 

 
Figure 6. Non-observable trajectory in BOTMA, the 

target, some ghosts, and the bearing-equivalent-non-

maneuvering observer. 

 

 

Proposition 11: Observability criterion in BOTMA for CA-

CV and CV-CA motions 
Assume that the observer is successively in CV motion and in 

CA motion (or in CA motion and in CV motion). The target’s 

trajectory is observable in BOTMA if and only if the bearing 

rate is non-null (that is, the bearings are not constant). 

 

Proof: 

We have only to consider the case where the target’s trajectory 

is not observable during the maneuvering phase. 

 The first leg starts at time 0t  and ends at time 
1Tt  . At this 

time, the CA motion starts and finishes at time 
fTt  . 

If the bearings are constant during this phase, then 

   10 TPP OE   and  0OE VV   (see lemma 1). We deduce that 

the bearings during  1,0 T  are also constant, that is, the 

respective trajectories of the virtual observer and of the target 

are on the same line. The target is non observable. 

If O and T are on an RDVR-II, following Lemma 1, the 

observer collects the same bearings as the non-maneuvering 

observer E. Hence, the observer collects the bearings acquired 

by an observer whose trajectory is composed of two legs: the 

first one is defined by  0OV , and the second one by 
EV . Note 

that 
EV  cannot be equal to  0OV , otherwise  0OT yy    and 

consequently 0x  (see Proposition 3). In short, the observer 

acquires the same bearings as the ones collected by a leg-by-leg 

maneuvering observer. Following [10], if the bearings are not 

constant, the target’s trajectory is observable from the 

equivalent observer E. Proposition 6 completes the proof. 

 

Proposition 7 allows us to determine when the observer is first 

in CA motion and then in CV motion. 

 

QED. 

IV. OBSERVABILITY CRITERIA IN ROTMA 

We proved in [13] that the target’s trajectory is not observable 

in ROTMA when the observer is in CV motion. Actually, in 
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this case, the ROTMA problem has a linear version, similarly 

to BOTMA. Indeed, even if the range does not depend linearly 

on the vector X, the square of the range can be expressed in 

linear form, relative to another vector denoted Z: 

          tVtPVtPtrtVPtr OTOT
T

OTOTOTOT 
2

2
2

2 0200

 

We define 
 

 






































3

2

1

2

2

0

0

Z

Z

Z

V

PV

P

Z

OT

OT

T

OT

OT

.  

So,     ,3,2,1,1 22  kZtttr kkk
 . 

This is another proof of the non-observability of the target’s 

trajectory in ROTMA, since this trajectory depends 

(mathematically speaking) on a three-dimensional vector, 

whereas the trajectory is defined by X. The vector Z is 

nevertheless observable: it defined the set of solutions given in 

Section IV-B of [13], which is an uncountable set (due to this 

linearity). 

 

In the two next subsections, we will consider two types of 

kinematics of the observer: CT motion and CA motion. 

 

A. Observer in CT motion 

 

Proposition 12: Observability in ROTMA for CT motion 

If the observer is traveling along an arc of a circle, then any 

target moving with a constant velocity is observable by range 

measurements only. 

 

Proof: 

Again, the proof is made in continuous time as in BOTMA. 

Suppose now that another target G moving with a constant 

velocity, say  
GV , is at the same range as the target of interest 

T. The square of the range at any time t  is 

                     22222 tytytxtxtytytxtxtr OGOGOTOT 

 
  

         

         
.

cos0sin0

cos0sin0

22

22

t

tytytxtx

tytytxtx

GGGG

TTTT















 

or, equivalently,  

          

        
    

          

        
     .,cossin2

cos0sin02

00200

cossin2

cos0sin02

00200

222222

222222

ttytxt

tytx

yyxxtyxtyx

tytxt

tytx

yyxxtyxtyx

GG

GG

GGGGGGGG

TT

TT

TTTTTTTT

































 

This implies the following five equalities: 

       

       

       

       

   

   
































)18(.cossin

cossin

)17(cos0sin0

cos0sin0

0000

0000

2222

2222









tytx

tytx

tytx

tytx

yyxxyyxx

yxyx

yxyx

t

TT

GG

TT

GG

TTTTGGGG

TTGG

TTGG









 
Equations (17) and (18) are equivalent to 

 

 
     tPP

t

t
TG 












000

cos

sin
T



  and 

 

 
  tVV

t

t
TG 












0

cos

sin
T



 . Since  

 















t

t

cos

sin  spans the 

whole two-dimensional space,    00 TG PP   and 
TG VV  . 

 

QED. 

 

Obviously, if the observer’s trajectory contains at least one arc 

of a circle, then the trajectory of any target having a constant 

velocity is observable in ROTMA. 

 

B. Observer in CA motion 

 

We proved in [13] that, when the observer has a leg-by-leg 

motion, the trajectories of the ghosts are obtained by orthogonal 

transformations of the trajectory of the target of interest. The 

matrices of these transformations are shown to be constant (they 

are independent of time). They are denoted H . 

 

Here, the matrices of these transformations can depend on time. 

This makes the analysis much more complex. In the following 

subsection, two examples are given: one with a constant H  and 

another with a non-constant matrix denoted  tH . 

 

1) Examples of constant and non-constant orthogonal 

transformation matrices 

 

First of all, we consider the case where  tPOT
 is not collinear 

with  . Let us prove that a ghost-target exists. Indeed, 

consider the time-dependent vector defined by

      









2
00

2t
tVPtP OTOTOG H for some orthogonal (and 

constant) matrix .H  The equality 

      
2

00
2t

tVPtP OGOGOG
 holds if and only if 

   00 OTOG PP H ,    00 OTOG VV H , and  H . This 

last equality implies that H  is the orthogonal matrix of the 

symmetry around the line spanned by the vector  . This 

constant orthogonal matrix will be denoted S  in the sequel. 

Hence the vector  tPOG
 defines the trajectory of a ghost-

target. 

We can conclude by the following proposition: 
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Proposition 13 

If  0OTP
 
or  0OTV  is not collinear with  , then the target is 

not observable.  

 

Let us present an example of this situation, depicted in Fig. 7. 

 

At the beginning of the scenario, the observer starts at 

 T00 with an initial speed of 5 m/s and an initial heading of 

90°. Its acceleration is the constant vector 

 T002.0006.0 (m/s2). The target starts at  T150  

(km) with a speed of 4 m/s and a heading of 0°. The duration 

of the simulation  is 45 min. Note that with an ad-hoc rotation, 

we can be again in the case where 0y . 

   

 
Figure 7. ROTMA: The observer in constant acceleration 

motion, the target, and a ghost. 

 

Conversely, if  0OTP ,  0OTV , and   are collinear, then the 

target is not necessarily observable. Let us give a non-obvious 

example: 

 

Let us consider an observer starting from 









0

0
 with a certain 

velocity and the acceleration vector 










0

2
 and a target 

whose relative motion is defined by   









0
0

2u
POT

 (for a 

certain value 0u ) and   









0

0
0OTV . Then a ghost exists and 

its relative trajectory is defined by   









0
0

2u
POG

 and 

  









u
VOG

2

0
0 . We have       

2
00

2t
VtPtP OGOGOG

. We 

readily check that      tPttP OTOG H  for the rotation matrix 

  















22

22

22
2

21

tutu

tutu

tu
tH . 

 

The second example leads us to think that analyzing 

observability must not be reduced to seeking constant 

orthogonal matrices, conversely to the case of a leg-by-leg 

trajectory of the observer [13]. 

 

2) Necessary and sufficient observability condition 

 

The following analysis will be conducted for the relative 

motion with respect to the observer’s trajectory. The question 

is to identify, if they exist, vectors  TyxyxX   such 

that  

  ttP
t

yty

xtx
OT 












,

2

2




      (19) 

Such a vector will be called a solution. The unknowns are the 

initial relative ghost-target position    TyxPOG 0  and its 

initial relative velocity    TyxVOG
0 . 

 

From the above subsection, we know that the set of solutions 

contains, of course, the vector defining the trajectory of the 

target, that is,         T0000 OTOTOTOTOT yxyxX   and 

the vector 

           T0000 OTOTOTOTOT yxyxX  SI2
, where 

the symbol   denotes the Kronecker product and 
2I  is the 

22  identity matrix. For convenience, the vector   OTXSI2   

is denoted S

OGX . It defines the trajectory of a ghost. 

 

We will show below that most of the time, other ghost-targets 

exist and the vectors defining their trajectories are linked to 

OTX  by a time-dependent orthogonal matrix  tHI2  . 

  

Before starting our analysis, we give a fundamental result in 

the following lemma: it establishes the equivalence between 

observability in discrete time and observability in continuous 

time. Therefore, we will conduct our analysis in continuous 

time, but the results will be valid for discrete time.  

 

Lemma 2 

If four different times   4,3,2,1,,0 nTin fn , satisfy   

     nOT
n

OGnOG PVP 


 
2

00
2

                       (20)  

then for any  fTint ,0  

       fOTOGOG TttP
t

tVP ,0,
2

00
2

 .  (21) 

 

Proof: 

First of all, note that eq. (21) is equivalent to  

      2

2
2

2
00 tP

t
tVP OTOGOG                         (22) 
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Each term of this equality is a polynomial function of degree 

4: 

    4

2

32

2
2

4
2

2
00 ttdtctba

t
tVP GGGGOGOG




, with 

 

   

   

  )23(0

)23(00

)23(00

)23(0

222

222

dxVd

cxyxPVc

byyxxVPb

ayxPa

xOGG

xOGOGG

OGOGG

OGG



















T

T

T

 

  4

2

322

4
2 ttdtctbatP TTTTOT


 , with  

 

     

   

  )24(sin0

)24(sin00

)24(cos00

)24(0

00

22

00

2

0

2

dhvVd

crvPVc

bhvrVPb

arPa

rxrOTT

xrOTOTT

rrOTOTT

OTT















T

T

T

 

Eq. (20), which is equivalent to 

      4,3,2,1,
2

00
2

2
2

 nPVP nOT
n

OGnOG 


  

gives us four instants where these two polynomial functions 

take the same values. Because they have a common coefficient 

(the 4th degree coefficient which is 
4

2


), these two 

polynomial functions are equal. 

QED. 

 

Eq. (23) and (24) yield the following lemma on which the 

search of ghost-target is based: 

 

Lemma 3 

The set of solutions of (19) is defined by the following 

equations: 

 

)28(sin

)27(sincos

)26(cos

)25(

00

2222

00

2

0

22

rxrx

xrrx

rr

hvx

rhvxyx

hvryyxx

ryx



















  

 

Note that eq (28) implies  0OTxx   . 

 

The next proposition characterizes the set of ghost-targets. the 

set of solutions among the set of four-dimensional vectors 

whose first component is a root of a certain quadratic equation 

given below, and the third component is  0OTx . 

 

Proposition 14 

The set of targets at the same range as the target of interest is 

composed by the target whose trajectory is defined by  

  OTOG XX SI2

S   and by  those whose trajectories are 

defined by  Tyxyx  , such that   

a)  x  is equal to  0OTx  or satisfies 

  02sin 2

00

2

0

2
2  rh

v
rx

v
x r

x

r

x

r 


 

b) and  0OTxx  . 

 

Due to its length, the proof (based on Lemma 3) is given in 

Appendix A. 

 

The two other components of 
OGX , that is, y  and y , remain 

to be identified using Eqs. (25), (26), and (27). 

 

For convenience, we now define   2

00

2 rSrxxxQ    

with 

x

rv




2

  and  rhS 2sin 0   . Note that   is negative. 

By convention, the heading 
rh  is zeroed when 0rv . 

 

Now, we are able to give a necessary and sufficient 

observability condition. 

 

Proposition 15: Observability condition in ROTMA for a CA 

motion 

Assuming that the observer is traveling with a constant 

acceleration vector, the trajectory of the target is observable 

from at least four range measurements acquired at different 

times if and only if O and T are on an RDVR-I. 

 

Proof: 

Firstly, suppose that the trajectory of the target is observable. 

From Proposition 13,  0OTP ,  0OTV , and   are collinear, so 

  0OTP  and    0OTV . In terms of coordinates, this 

yields       00,0,0  OTxOTxOT yxx   , and 

  00 OTy . Hence  

 

x

OTx




02
 ,    0sinsin 00000 OTxrrSr   , and 

consequently 

 
 

 
 

 0
0

0
0 2

22
2

OT

x

OT
OT

x

OT x
x

xx
x

xxQ 



. 

 

Formally, the roots of   0xQ  are  0OTxx   and 

 
 

x

OT
OT

x
xx



0
0

2
 . Since the trajectory of the target is 

observable, either    
 

x

OT
OTOT

x
xx



0
00

2
 , in other words, 

 0OTx  is a double root (this corresponds to 
2

2
  ), or 

 
 

x

OT
OT

x
x



0
0

2
  is an unacceptable physical solution; that 

is  
  2

0

2
2 0

0 r
x

x
x

OT
OT 













. Because  022

0 OTxr  , this 

inequality is equivalent to  22  . The target and the 
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observer are on an RDVR-I from Proposition 2. 

 

Conversely, suppose that the target and the observer are on an 

RDVR-I; that is   0OTP  and    0OTV , and  22 

. We have  

          TT
000000 xxOTOTOTOT yxyx  . 

Under this assumption, the scalars 
TT ba , and 

Tc, , defined in 

(24), take the following values

  22222 ,, xTxTxT cba   . So, the set of 

equations (25), (26), and (27) becomes 

  )31(

)30(

)29(

22222

2

2222

xxx

xx

x

xy

yyx

yx















   

which is equivalent to  

 

  )34(

)33(

)32(

2

2222

xx

xx

x

xy

xyy

xy















  

 

Taking the square of (33), we obtain  22222 xyy xx   . 

 

Then using (32) and (34), we get  

    222222 xxx xxxxx   , which can be 

factorized into       222
xxx xxxx      

(35). 

 

If 
xx  , then (35) is equivalent to   xx x  2 , 

from which we derive   xx  2 . Substituting into (32), 

we have    22222

xy   ; that is, 

  2222 2 xy   . As a consequence,   02 22  . 

Let us consider the two following cases. (i) 0 . Then 0  

and 0y  ; we deduce from (29) that 
xx  . Reporting 

this value into (34), we get 22

xy  . We deduce that 

0 . Hence 0 , which is incompatible with the fact that 

  0tr , for  fTt ,0 . (ii) 0 . Then 02 2  , but 

by assumption, 02 2  . Hence 02 2  . We have 

0y . Now, from (33), we get 
xx  , which is impossible. 

From this discussion, we conclude that the case 
xx   

must be rejected. 

 

Hence, 
xx   and consequently 0y  and 0y . The 

trajectory of the target is observable.  

 

QED. 

 

Recall that the FIM in BOTMA and the FIM in ROTMA are 

of the same rank. As a consequence, when O and T are on an 

RDVR-I, the FIM is singular (since in BOTMA, the target 

trajectory is unobservable). This is a nontrivial example of a 

mismatch between the singularity of the FIM and the 

observability (in ROTMA). A similar example was given in 

[13], when the observer is zigzagging. 

 

3) Unobservable case: construction of the set of ghosts 

 

When the observability condition given in Proposition14 is not 

satisfied, identifying the set of ghosts is interesting. We 

propose to solve this problem by using the same approach as 

previously, by exploiting the roots  21, xx  of  xQ . To do 

this, we need a first result. 

 

We start with the following proposition: 

 

Proposition 16: Existence condition of only one ghost in 

ROTMA for a CA motion 

Assume that the observer is in CA motion. One unique ghost 

exists if and only if O and T are on an RDVR-II. Moreover, its 

trajectory is defined by S

OGX . 

 

Proof: 

First, assume that O and T are on an RDVR-II; that is, 

    0
2

1
00 2  xcOTcOT txtx   and     000  OTcOT yty  . 

 

Any ghost is also on an RDVR-II with the observer. 

Consequently, we have  

0
2

1 2  xcc txtx   and 0 yty c
 . 

 

We deduce that    00 OTcOTc xtxxtx   . Since  0OTxx   , 

we conclude that  0OTxx  , and  0OTyy   and 

 0OTyy   . 

 

We have one unique ghost given by 

         S

OGOTOTOTOT XyxyxX 
T

0000  . 

 

Conversely, assume now that one unique ghost exists. We 

recall that its trajectory is defined by  TyxyxX   and 

that  0OTxx   . 

 

First of all, let us prove that  0OTxx  . Indeed, if  0OTxx  , 

then 0 yy   (otherwise, another ghost exists whose 

trajectory is defined by  TyxyxX   , which is in 

contradiction with the unicity of the ghost). At this point, we 

necessarily have   T000 OTxxX  . Suppose that 

  00 OTy  or   00 OTy . Then, the vector 

        T0000 OTOTOTOT yxyx    defines the trajectory 

of a ghost. Since the ghost is unique, we have 

           TT
0000000 OTOTOTOTOT yxyxxxX  

, which is a contradiction. Hence     000  OTOT yy  . To 

summarize, we have obtained     T0000 OTOTOT xxX  , 

and   T000 OTxxX  . Consequently,  0OTxx  , 
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which is in contradiction with the assumption. Hence, 

 0OTxx  . 

Therefore,    00 OTxQ . Let us develop the expression of 

  0OTxQ  : 

       2

00

2 000 rSrxxxQ OTOTOT   , 

with 

x

rv




2

 and  

    .cossincos22sin2cossin2sin 0

22

00 rrrrr hhhhhS  

 

    

  rrrr

x

r

x

r
OTOT

hhhh
v

r

v
ryxQ

cossincos22sin2cossin

sin00

0

22

0

2

0

2

00

2











 

   

rr

x

r

rr

x

r
OT

hh
v

r

hh
v

ry

cossincos2

2sin2cos1sin0

0

2

0

22
2

00

2











 

  rr

x

r

x

r
rOT hh

v
r

v
hry cossincos22cossin20 0

2

0

2
2

00

2 


 

 

 
 

 
 

   00
0

20
0

20 22

OTOT

x

OT
OT

x

OT
OT yx

y
y

x
y 


  

  
 
 

        0000
0

0
200

2 OTOTOTOT

OT

OT
xOT yxyx

y

y
xQ 


  . 

According to Proposition 3, the target and the observer are on 

an RDVR-II. 

 

QED. 

 

Here, the singularity of the FIM and the unobservability of the 

target’s trajectory are consistent (see Proposition 9). 

 

The following lemma provides us information about the two 

solutions of the quadratic equation   0xQ , introduced in 

Proposition 14. This piece of information will help us to 

identify all the ghost-targets. We recall that  

  2

00

2 rSrxxxQ   , with 

x

rv




2

  and 

 rhS 2sin 0   . 

 

Lemma 4 

The equation   0xQ  has two real roots defined by 

2
1





x  and 

2
2





x , with  

   22

0

2

0 142 SrSr   . Moreover, 

 
2010 xrxr  . 

 

Proof: 

We readily verify that the discriminant of   0xQ  is 

   22

0

2

0 142 SrSr   , which is a positive quantity. 

Hence the two roots are real and are given by 
2

1





x  

and 
2

2





x . Note that 

21 xx  . 

 

We note that    100  SrrQ  , and    100  SrrQ  . 

Hence,   00  rQ  and    00 rQ . We deduce that 

2010 xrxr   and, as a consequence, that 
2x  is 

strictly positive. 

 

QED. 

 

Lemma 4 will conduct our study according to the following 

table: 

 

Table I: Values of  21, xx  

 1x  
2x  

Case 1 01 rx   
02 rx   

Case 2 010 rxr   
02 rx   

Case 3 01 rx   02 rx   

Case 4 01 rx   
02 rx   

Case 5 010 rxr   
02 rx   

Case 6 01 rx   02 rx   

 

Recall that  21 xx  and   0021 rSrxx   . We 

deduce that Case 1 is the only case where 0rv . 

 

Case 1: 
01 rx   and 

02 rx   

The sum of the roots is zero, that is 0  

 0 rv  ; as a consequence,

 T00cossin 0000  rrXOT  . 

 

From (25), for 
1xx   or 

2xx  , we get 0y .  

 

For 
1xx  , from (27), then 

000

2 sin xx rry  , 

or equivalently  00

2 sin1   xry . Hence 

 00 sin1   xry . We get two ghosts, given 

by 

 























00

0

sin1

0

0

 xr

r

X
. If 

2
0


  , then 

these two solutions merge into one: 

  OTXrX 
T

0000
. 

 

For 
2xx  , from (27), then  00

2 sin1   xry . 
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But the right member of this equation is negative or 

null (when 
2

0


  ), whereas the left member is 

positive or null. We get one solution if 
2

0


   : 

  OTXrX 
T

0000
. 

 

In conclusion, in Case 1, if 
2

0


  , we end up with 

three ghosts, whose respective trajectories are defined 

by  

 























00

0

sin1

0

0

 xr

r

X
 and S

OGX . 

If 
2

0


  , we get two ghost-trajectories given by 

























xr

r

X

0

0

2

0

0 . 

The target is observable if and only if 
2

0


  .  

 

Case 2: 
010 rxr   and 

02 rx   

In this case,  0001 rSrrx    and  01 rx . 

Then necessarily, 1S ; that is, 

)2(mod
2

20 


  rh . Note that in this case, 

rh20 sin
2

sin1


 
 and 

rh20 cos
2

sin1


 
. 

 

Since 012  xx , we get 02 0  r . 

 

The root 
1xx   allows us to construct two ghosts: if 

0sin rh , then  

 
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








, with 1 ; else 

 
 

  



























rx

OT

hr

x

r

r

X

2

0

0

0

sin2

0

2








. 

 

 

For 
2xx  , from (27) we get 

 00

2

000

222 sin1sin   xrxxr rvrrvyx  , 

which is equivalent to  

     .sin12cos1
2

sin1cos 00

2

00
222   xr

r
xrr rh

v
rhvy

We have 
0sin2cos rh . So, we get  

   

   

  

  .cos2

sin12
2

1

sin1sin1
2

sin1sin1
2

2

0

00

000

000

2
2

rx

x

x

x
r

hr

r

r

r
v

y




























 

The square 2y  being positive or null and the right 

hand side term being negative or null, we have 

2
0


  . That yields the vector 

 




















0

0

0

0

OTx

r

X


 (which 

is equal to the vector defining the trajectory of the 

target). 

 

In conclusion, in case 2, if 
2

0


  , then we have 

three ghosts; else we have two ghosts (in case 2, the 

target is not observable). 

 

Case 3: 
021 rxx    

In this case, 0  or equivalently 12 S  and 

Sr02 . Because   is negative, we get 1S  

(hence S2 ). 

 

First of all, note that 
2

21 0


  rhS  and 

xr rvr  00 22  . 

 

From (25), we have 0y . Reporting 
0rx   into (27) 

we get 

  00

2

0

22 sin0  xrxOT rvryx    

  xxOTr rrxvy  000

222 sin0    

    xOT ry 00

2 sin10    

 

  

   

   

    
0

sin1sin1

sin1sin1
2

sin12cos1
2

sin1cos

sin1cos

0000

000

00

00

2

00

22













































rr

r

rh

rh

rhv

x

x

rx

rx

xrr

. 

 

Consequently, 0y .  
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We deduce a solution given by 

  T0000 OTxrX  . 

 

We verify that equations (25), (26), (27), and (28) are 

satisfied.  

 

In conclusion, in Case 3, the target is observable if 

and only if 
2

0


    (

2


 rh ). Otherwise, two 

ghosts exist, defined by   T0000 OTxrX   

and S

OGX . 

 

Case 4: 
01 rx   and 

02 rx  . 

As in case 2, we exploit the sum and the product of 

the roots:  0020 rSrxr    and  02 rx . 

Then necessarily, 1S , which is equivalent to 

)2(mod
2

20 


  rh . In this case, 

rh20 cos
2

sin1


 
. 

 

We note that 02 0  r . Again, from (25), we have 

0y . 

 

From (27), we get 

 00

2

000

222 sin1sin   xrxxr rvrrvyx  , 

which is equivalent to 

 

   00

2

00

222

sin12cos1
2

sin1cos









xr
r

xrr

rh
v

rhvy
. We have 

0sin2cos rh . So, we get  

   

   

  

  .cos2

sin12
2

1

sin1sin1
2

sin1sin1
2

2

0

00

000

000

2
2

rx

x

x

x
r

hr

r

r

r
v

y




























,  

which is a positive quantity. 

So, two ghosts exist, defined by

 

  

























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




.  

 

In conclusion, in Case 4, the target is observable if 

and only if 
2

0


   ( 0cos  rh ; that is 

2


rh

). Otherwise, three ghosts exist: 

 

  

























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

Case 5: 
010 rxr   and 

02 rx   

From Eq. (25), 
2

1

2

0 xry  . Introducing this 

value into (26), we get 

   
2

1

2

0

100 0cos

xr

xxhvr
y OTrr









 . This value also 

satisfies Eq. (27) (see Appendix A2). Consequently, 

we obtain the following two solutions: 

 
   































2

1

2

0

100

2

1

2

0

1

0cos

0

xr

xxhvr

x

xr

x

X

OTrr

OT








, with 

1,1  .  

In conclusion, in Case 5, the target is never 

observable. At most, three ghosts exist, given by 

 
   































2
1

2
0

100

2
1

2
0

1

0cos

0

xr

xxhvr

x

xr

x

X

OTrr

OT








, with 

1,1  , and S

OGX .   

This case includes the scenarios where T and O are 

on an RDVR- II.  

 

Case 6: 
01 rx   and 

02 rx   

As in case 2,  0020 rSrxr    and  20 xr . 

Necessarily, 1S  and 
02 rx   . The equality 

1S  is equivalent to 
2

20


  rh .  

 

The assumption 
02 rx   implies that 02 0  r ; 

hence 
xr rv 02 . 

 

The component y  is then readily computed: 

  00 sin12
2

1
  ry x



  rx hr 2

0 cos2  .  

 

From (25), we get 0y . So, two solutions exist, 
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defined by

 

  























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




. The 

equations (25), (26), (27), and (28) are verified. 

 

In conclusion, in Case 6, the target is observable if 

and only if 
2

0


 

2


 rh .  

 

Else three ghosts exist and their trajectories are 

defined by 

 

  























rx

OT

hr

x

r

X

2

0

0

cos2

0

0




 and S

OGX . 

 

Table II: Summarized results of observability in ROTMA 

 

Necessary condition to have ghosts 

0  

(Observability 

case: RDVR-I) 

1 2 3 

Case 1 
2

0


   never 

2
0


   

2
0


   

Case 2 never never 
2

0


   

2
0


   

Case 3 
2

0


   never 

2
0


   never 

Case 4 
2

0


   never never 

2
0


   

Case 5 never RDVR-II never Not RDVR-II 

Case 6 
2

0


   never never 

2
0


   

 

The content of Table II is consistent with Propositions 14, 15 

and 16.  

At this point, we can propose the following algorithm to 

construct (if existing), all the ghosts from a set of noise-free 

measurements  Krrr ,,, 21  , with 
kr the range at time 

kt : 

If rtrtr kxkk
 0

2

2

1
 ,  or rtrtr kxkk

 0

2

2

1
   and 

xrr 0

2 2 , then the trajectory of the target is observable and 

we compute the state vector by minimizing the criterion 

  




K

k

kk rXtr

1

2
,  w.r.t. X . 

If not, we compute one of the vectors X  (it is not unique since 

the trajectory of the target is not observable) that minimizes

  




K

k

kk rXtr

1

2
, , then we choose this vector as the state 

vector of the target of interest (of course in reality, this choice 

can be wrong); this choice provides us with the corresponding 

polynomial function  xQ  and its two roots. Finally, we 

compute the other solutions X  by exploiting the above 

analysis (we only have to identify in which case we are). Of 

course, we are unable at the end to separate the wheat from 

the chaff, that is, to identify the state vector of the true target 

among the ghost-targets. 

 

4) Examples  

 

In this paragraph, we give one example for each case. In the 

following scenarios, the observer has the same trajectory: at the 

very beginning, it starts from  T00  
with an initial velocity of 

 T210 m/s. Its acceleration is the constant vector 

 T00416.0 (m/s2). The duration of the scenario is equal 

to 6 min ( 360fT s). The observer’s trajectory is hence the 

same as in Section III. C. (as shown in Fig. 6). 

 

In the next figures, the trajectories of the observer and target are 

shown by thick lines, whereas those of the ghosts are shown by 

thin lines. The capital letters (“O” for observer, “T” for target, 

and “G” for ghost) designate the moving objects.  

 

a) Example of observable case (case 1) 

 

The target starts at  T04000  (m) with a velocity of 

 T210 (m/s). The observer and the target are on an RDVR-I, 

since   2

0
2

1
trtr x  (Proposition 4 is satisfied). Fig. 8. 

depicts the scenario. 

 

 

 
Figure 8. Observable case in ROTMA, RDVR-I. 

 

b) Examples of unobservable cases  

 

The following example corresponds to case 5 with a RDVR-II. 

The target starts at  T40003000  (m) with a velocity of 

 T76  (m/s). We can readily verify that 
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  75.00023.0tan  tt  thanks to Proposition 5. The 

observer and the target are on a rendezvous route of type II. We 

can see in Fig. 9. that one ghost exists, and it is in a rendezvous 

route with the observer (see Proposition 16). 

 

 

 
Figure 9. Unobservable case in ROTMA, RDVR-II. 

 

The next example corresponds to case 2. 

The target starts at  T04000  (m) with a velocity of  T225

(m/s). We can check that   tttr x 154000
2

1 2   , but 

   3332225 0

2  xrr  . Consequently, the observer and 

the target are not on a rendezvous route from Proposition 4. The 

bearings are constant (their value is 90°), two ghosts exist, as 

announced in Table II (See Fig. 10). Note that if the role of T 

and G1 (for example) are inverted (G1 becomes the target and T 

becomes a ghost), then this scenario corresponds to case 3: 

actually the polynomial function  xQ  is not the same (see eq. 

(A6) in the proof of Proposition 14). The bearings of this new 

target are not constant, but two ghosts only exist. 

 

 
Figure 10. Unobservable case in ROTMA, with constant 

bearings and no rendezvous route. 

 

The last example offers a scenario for which three ghosts exist. 

It corresponds to case 5. 

The target starts at  T34642000  (m) with a velocity of 

 T3.166.14 (m/s). The observer and the target are not on a 

rendezvous route and the bearings are not constant. Three ghosts 

exist (the maximum number of ghosts), as depicted in Fig. 11. 

 

Figure 11. Unobservable case in ROTMA, general case (no 

rendezvous route and non-constant bearings). 

 

V. CONCLUSION 

In the present paper, the results of the observability analysis in 

ROTMA started in [13] for a target in constant velocity 

motion and an observer moving leg by leg, have been 

extended to a smooth observer’s maneuver (constant turn 

motion and constant acceleration motion). 
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When the observer is in CT motion (see for example [1] and 

[4] in BOTMA and [14] and [15] in ROTMA), observability is 

guaranteed in BOTMA and in ROTMA as well. If a part of the 

displacement of the observer is in an arc of a circle, this 

conclusion remains valid.  

When the observer is in CA motion, observability in BOTMA 

is guaranteed if the observer and the target are not in an 

RDVR and the bearings are not constant. In ROTMA, if they 

are in an RDVR and the bearings are constant, the trajectory 

of the target is observable. This proves that even if the 

observer kinematic is of an order greater than the kinematic of 

the target, observability is not guaranteed. This is not in 

contradiction with [5], whose authors established a necessary 

(but non-sufficient) observability condition in this case for 

BOTMA. When the target is not observable, in ROTMA, the 

set of ghost-targets is finite; we give the way to construct them 

from noise-free measurements and we end up with three 

ghost-targets at most. In BOTMA, the set of ghost-targets is 

uncountable. Measurement-based criteria that allow it to be 

known whether or not the target is observable are also given.  

To summarize, unlike what we established in [13] (the 

observer trajectory was composed of several legs), that is, that 

the target is bearings-only observable if it is range-only 

unobservable and the converse, for the two types of smooth 

maneuvers considered here, this duality is not verified. All our 

results are summarized in the following Table: 

 

Table III: Synthetic results about observability 

Observer’s kinematics BOTMA ROTMA 

CT Yes Yes 

CA: RDVD-I No Yes 

CA: RDVD-II No No  

CA: constant bearings No No  

CA: others Yes No 

 

 

We extended in BOTMA our analysis when the observer’s 

trajectory is composed of a CA motion followed by a CV 

motion (and inversely): arguing fundamental properties, we 

proved that if the bearing rate is non-null, the target is 

observable. 

Despite the rank equality of the FIMs in ROTMA and 

BOTMA (see [13]), the statuses of observability in ROTMA 

and in BOTMA are not necessarily the same. Even if this 

result is surprising, it is consistent with the theory (see for 

example [8]): the existence of a linear form of the BOTMA 

problem explains: (i) the equivalence between the regularity of 

the FIM and observability and (ii) the unaccountability of the 

set of ghost-targets in non-observable situations. Conversely, 

in ROTMA, in the case of non-observability, the FIM can be 

singular or not and the set of ghost-targets is finite. This is a 

proof that the problem of ROTMA cannot be expressed under 

a linear form (otherwise the set of ghost-targets would be a 

linear subspace and hence uncountable).  

Obviously, we do not claim to have achieved a complete study 

of observability in ROTMA; for example, the cases when the 

observer’s trajectory is composed of a CA motion followed by 

a CV motion, or when the motion of the observer is 

polynomial of order greater than two, or when the observer 

does not maneuver whereas the target does (which we studied 

in BOTMA in [2] and [9]), and so on must be investigated. 

Our study can help as a basis. 

 

The next step (and paper) concerning ROTMA is the 

estimation, when the measurements are polluted by an additive 

noise. The observability analysis presented here will allow us 

to anticipate several difficulties: (i) thanks to the given 

criteria, we will be able to construct a statistical test to decide 

whether the observer and the target are on a rendezvous route 

or not. (ii) Moreover, for a given solution, we will construct 

the set of ghost-targets in the case of a lack of observability. 

(iii) Finally, an initialization of any numerical routine 

(necessary to compute the maximum likelihood estimate of the 

state vector), based on this analysis, can be proposed. 

 

APPENDIX 

 

A. Proof of Proposition 14 

 

We exploit here the four equations of Lemma 3. In order to 

render the proof lighter, we drop the subscript T in 
Ta , 

Tb and 

Tc  defined in (24): 2

0ra ,   rr hvrb  00 cos  , and 

00

2 sin xr rvc  . 

From (28), we have  0OTxx  . Reporting this first result into 

(27), we get   .0 22 cxyx xOT    Then, multiplying both 

sides of this equation by 2y , we get 

  222222 0 cyyxyyxy xOT   .           (A1) 

From (26), we know that   222 0OTxxbyy   . Inserting this 

into (A1), we get 

    22222 0 cyyxxxbxy xOT   .    (A2) 

 

Finally, using Eq. (25), we replace 2y  by 2xa   in (A2), and 

we end up with the following equation: 

          22222 00 xacxaxxxbxxa xOTOT   .    (A3) 

 

The cubic equation (A3) has at most three real roots (one of 

them is  0OTx ).  Let us denote the three solutions as 

 2,1,0ixi
 (in some cases, only one or two roots exist). 

For convenience, the root  0OTx  will be denoted 
0x . 

 

To compute the two other roots, we first develop (A3): 

        0cst0200 2223  xOTOTOTx axbxcxxxx  

 

   0cst0223  xOTx axbxcxx   .       (A4) 

 

Since 
0x  is a root, we have 

   0cst020

2

0

3

0  xOTx axbxcxx   .      (A5) 

The difference (A4) – (A5) is 

         0020

2

0

23

0

3  xOTx axbxxcxxxx   ,     

or, equivalently, 
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          00200

2

0

2

0  xOTx axbcxxxxxxxx   .     

(A6) 

 

Dividing (A6) by  0xx , we get 

       00200

2

0

2  xOTx axbcxxxxxx      (A7), 

which is a quadratic equation. 

 

Rearranging the terms of (A7), we end up with 

     0020

2

00

2  xOTxxx axbcxxcxxx    

or equivalently  

  0020
0

02 













 ax

bcx
x

cx
xx OT

xx

x

x

x 






 . 

 

Now, we replace the terms ,, ba  and c  by their respective 

values. The equation to be solved is hence  

  0sincos2sin 2

00

2

00

2

0

2
2  rhh

v
r

v
r

v
xx rr

x

r

x

r

x

r 





   0sincos2sin 2

000

2

0

2
2  rhh

v
r

v
xx rr

x

r

x

r 


  02sin 2

00

2

0

2
2  rh

v
r

v
xx r

x

r

x

r 


.  

 

QED. 

 

B. Case 5: Compatibility of Eqs. (26) and (27) 

 

We start this proof with two useful lemmas. 

 

Lemma L1:      0cossin2sincos 2
000

2  rrr hhh  . 

 

Proof:  

   rr hh 22cos
2

1

2

1
cos 00

2    

    rrr hhh 2cos22cos
2

1
sin2sin 000    

rr hh 2cos
2

1

2

1
cos2   

 

Hence,     0cossin2sincos 2
000

2  rrr hhh   

 

QED. 

 

Lemma L2: If 1x  is a root of  xQ , then 

Srxxr  01

2

1

2

0   

 

Proof:   

  2

00

2 rSrxxxQ    with 

x

rv




2

 and 

    rrr hhS sinhcos2sin2sin 000    

 

As 
1x  is a root of  xQ , we have 

  02

001

2

11  rSrxxxQ  . 

 

Hence, Srxxr  01

2

1

2

0  . 

 

QED. 

 

Now, we are able to prove that 

   
2

1

2

0

100 0cos

xr

xxhvr
y OTrr









  satisfies (27); that is, 

 001

222 sincos  rxhvy xrr  . 

 

To do this, we compute the difference 

     001

22

2

2

1

2

0

100 sincos
0cos




rxhv
xr

xxhvr
xxrr

OTrr 
















 

 

or equivalently  

    

   Drxhvxr

xxhvr

xxrr

OTrr





001

222

1

2

0

2

100

sincos

0cos



 
. 

 

First of all,  

    

   

   rrOT

OTrr

OTrr

hvrxx

xxhvr

xxhvr







001

22

10

222

0

2

100

cos02

0cos

0cos












  

 

  rrr

rrrr

hhvrx

hvxhvr

sincos2

sincos

0

2

01

222

10

222

0








 

   0

2

01

222

10

222

0 sinsincos   Svrxhvxhvr rrrrr
    (A8) 

Now we compute   001

222

1

2

0 sincos  rxhvxr xxrr  . We 

use Lemma L2: Srxxr  01

2

1

2

0  . 

 

Hence,  

  
  001

22

01

001

222

1

2

0

sincos

sincos





xxrr

xxrr

rxhvSrx

rxhvxr




 

                00

2

1

222

01 sincos  rvxvhvSrx rrrr   

                         

  0

22

0

22

01

0

2

01

2

01

2

1

2

sincos

sin





SvrhvSrx

vrxSvrxxv

rrr

rrr




 

    0

22

001

22

0

2

01

2

1

2 sincossin  SvrSrxhvSvrxxv rrrrr 

   (A9) 

 

We end up with D (A8) – (A9), that is,  

   

    0

22

001

22

01

2

0

2

1

2

0

2

01

222

10

222

0

sincossin

sinsincos





rrrrr

rrrrr

vSrSrxhvSxvrxv

SvrxhvxhvrD



  

    

   
  0

22

001

22

222

10

222

0

sincos

1sincos





SvrSrxhv

hvxhvr

rrr

rrrr




 

    

    0

22

001

2

1

22

0

222

0 sincoscos  SvrSrxxhvhvr rrrrr 

   (A10) 
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But, again from Lemma L2, we have  2

001

2

1 rSrxx   . 

We simplify (A10) and we get 

  0

22

0

222

00

222

0 sincoscos  SvrhvrhvrD rrrrr   

    00

2

0

222

0 sin2sincoscos  rrrr hhhvr  . 

 

Using Lemma L1, we conclude that 0D . 

 

QED. 
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