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Observability: Range-Only versus Bearings-
Only Target Motion Analysis when the
Observer Maneuvers Smoothly

Claude Jauffret Member IEEE, Annie-Claude Pérez, and Denis Pillon

Abstract— Range-only target motion analysis (ROTMA)
consists of estimating the trajectory of a target using a single
platform collecting range-only measurements. Observability
analysis is carried out when the target is in constant-velocity
motion and the observer maneuvers gently (a constant turn
motion or a constant acceleration motion). We compare
observability in bearings-only target motion analysis (BOTMA)
and ROTMA throughout the paper, together with the rank of the
Fisher information matrix. In each case, we establish necessary
and sufficient observability conditions and we identify the virtual
(or ghost) targets giving the same measurements when the system
is not observable.

Index Terms— Target motion analysis, tracking, range-only,
bearings-only, observability, Fisher information matrix, constant
turn motion, constant acceleration motion.

I. INTRODUCTION

HIS PAPER presents the second part of the observability

analysis in range-only target motion analysis (ROTMA),

started in a previous paper [13]. The target (or source) was
assumed to be in constant velocity (CV) motion. The previous
paper [13] provided the following results:
The Fisher information matrices (FIMs) in BOTMA and in
ROTMA have the same rank when the source is in CV
motion, whatever the trajectory of the observer.
Secondly, when the observer is zigzagging, with constant
speed on each leg, the trajectory of the source is observable in
ROTMA if and only if it is unobservable in BOTMA. We
proved this happens when and only when the bearings are
constant. In this case, the FIM is singular, whereas in
ROTMA, the target’s trajectory is observable. Conversely,
when the trajectory of the target is observable in BOTMA, it is
unobservable in ROTMA.
At this point, a prior question must be asked: are these
antinomic observability conditions in BOTMA and in
ROTMA maintained for other observers’ maneuvers? Some
answer elements are given in the present paper for two types
of smooth maneuvers of the observer: a constant turn (CT)
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motion or a constant acceleration (CA) motion and a
combination, CA-CV (for BOTMA only) and CT-CV.

Note that generalizing this comparison is difficult because,
unlike in BOTMA, general necessary and sufficient
observability conditions do not exist in ROTMA: indeed,
when the observer maneuvers, this problem cannot be
expressed by a linear system, whereas in BOTMA, a linear
system can be exhibited [3, 11, 16]. In ROTMA, for each
observer’s kinematics, a specific study of observability must
be conducted.

Our strategy of analysis is the same as in [13]: we start with
BOTMA, we deduce the rank of the FIM, and finally, we
study the observability of the target in ROTMA (under the
same conditions).

We will prove that when the observer is in CT motion, the
target is observable in BOTMA and in ROTMA as well. In
this case, the FIMs are of full rank (no antinomy). When the
observer is in CA motion, several situations can occur: the
target can be observable in ROTMA and the FIM can be of
deficient rank, or the target can be unobservable in ROTMA
and the FIM can be of full-rank or deficient rank.

When the trajectory of the target of interest is not observable,
a set of ghost-targets exists, which misleads the operator when
he or she tries to estimate the state vector. This problem also
occurs when associating multi-tracks between several arrays
[6]. Therefore, in BOTMA, the observer must maneuver in
order to render the trajectory of the target observable.
Unfortunately, some maneuvers are ineffective [7] [12]. Here,
we give some examples of ineffective maneuvers in ROTMA.

The paper is organized as follows:

In Section Il, the problem and the ad-hoc notations are given.
The notion of observability is recalled and the models of the
two types of trajectories of the observer are given, as well. We
introduce the notion of a rendezvous route (and the associated
criteria), which will play a crucial role in the analysis of
observability when the observer is in CA motion.

In Section 111, observability in BOTMA is analyzed when the
observer is in CT motion, in CA motion, and in CA motion
followed by CV motion or the converse. For each kinematic,
we give necessary and sufficient observability conditions. The
set of ghost-targets is characterized in the scenarios where the
target is unobservable.

Section 1V is devoted to ROTMA: we start by revisiting the
situations in which the observer is in CT motion and then in
CA motion. For each of them, we give necessary and
sufficient observability conditions. In unobservable cases, we
identify the set of ghost-targets. Illustrative examples are



given.
The conclusion follows.

I1. GENERAL NOTION AND NOTATIONS

A. Definitions and notations

A target (T) and an observer (O) move in the same plane,
given a Cartesian system. The target has a CV all along the
scenario, while the observer maneuvers (here, the term
“maneuver” is employed when the observer is not in CV
motion). The scenario starts at time t=0 and finishes at time
t=T,.

For the observer, the position and velocity at time t are
respectively Py(t) =[x () Yo )" and

Vo (t)= dPot(t):[Xo ) yo 0] Both are concatenated into the

vector X, (t)=[x, () Yo %) Vo) -

For the target, the notations are similar: P, (t)=[x, (t) y; ()]"

dP()

T at =[* yT]T:a”d XT(t):[XT(t) yr () X yT]T'

In the sequel, X, (0) will be simply denoted as X, which

entirely defines the target’s
P (t) =B (0)+tVT :

We will assume that P, (t)= P, (t), vte [0, T, ] -

trajectory. Obviously,

The motion of the target relative to the observer is given by
Por (t)_ P (t) ( ): [Xor (®) Yor 1" and by

Var )= g, yor o7 The

vector. We deflne the vector
XOT (t) = XT (t)_ Xo (t) = [XOT (t) Yor (t) XOT (t) y0T (t)]T :

relative  velocity

All the angles are clockwise-positive. Subsequently, we will
use the symbol £ to designate angles: for any pair of vectors
Uand W, ~(U,w) is the angle defined by the couple (U,w)

referenced to U. When U is collinear to the northward
direction, we will use W only (for the bearing or heading).

The range and the bearing at time t are given respectively by

r(t)=] P,y (t)] and 6t)= 2Po; (t)- SO, p__(1)=r(t) Lfine(t)} ; that

os 4(t)
is, {xT (t)=r(t)sinO(t)+ x,(t)
¥ (t)=r(t)eos 0(t)+ o (1

Subsequently, we will use the following simplified notations:
6 :‘9(0)’ fo :I’(O), Ve :‘NOT(O) , and hy = £Vor (0) for the
initial bearing, range, relative speed, and heading. For
convenience, X (0) will be denoted simply X

Figure 1 displays a typical scenario.

North (y)

4

Target’s heading

Bearing : 6(t)
Target

Observer’s
heading

Range : R(t)
\jobserver

Fig. 1. Typical scenario of TMA.

»

>
East (x)

B. Observability notion
We extend the previous notation to emphasize this
dependence: ¢(t) and r(t) can be denoted o(t, X, ) and

I’(t, XOT)'

We recall that the target’s trajectory is declared observable in
BOTMA if the following statement is  true:

vte[0,T,], ot X)=6(t, Xor) = X=X, . Otherwise,
the trajectory is said to be unobservable: at least, one vector
XOG :[XOG ) Yoe ) Xoc YOG]T(deﬁning a CV motion)
different from Xor exists such that

Olt, Xoe)=6lt, Xo7 ), vte[0,T,] -

Similarly, in ROTMA,
vie[o, T, ], r(t, X)=r(t, Xo;) = X=X

again, at least one vector X . =[xc(0) Yoe(©0) %o Yool
different from X exists such that r(t, X )=r(t, Xo;)-

the observability definition is
Otherwise,

The vector X 6 = Xos + Xo defines the “virtual” trajectory of
a “ghost-target”, denoted G. We deﬁne similarly
P(0)=[x(0) ys(O)]'+ Vo =[% VeI

R(t)=F, (0)+th :[xG (t) Ye ()], and

Xs®)=[® Yo % Vo] - withthe convention

X =Xg (O)

Note that, depending on various circumstances, the set of
“ghosts” is finite or can be a family (an uncountable set).

Observability analysis has two aims:
a) Give a necessary and sufficient condition to have
unicity of the state vector X .
b) When this condition is not satisfied, characterize the
setof X .

This will conduct our paper.



C.Observer kinematic models

As announced in the introduction, two models of smooth
observer motion are considered in this paper: in the first, the
observer travels in an arc of a circle at constant speed, and in
the second, it has a constant acceleration vector.

1) CT motion
The observer turns around a fixed point P, :{Xc} at range
Ye
p >0, with a constant turn rate « =0 (positive if the motion
of the observer is clockwise) and an “initial angle” ¢ relative
to north, at the beginning of its motion. Its speed is constant.
As a consequence, at time t (recall that the initial time is equal
to 0), the location of the observer is given by
P(t)=P. + {Sin(a’”‘/’)} (see Fig. 2). In order to simplify
cos(wt +¢)

0

the coming calculation, we will assume that P. = {0} .

P,(0)

Target's
Trajectory

P;(0)

North

Observer's
Trajectory

East
Figure 2. Typical scenario when the observer is traveling

in an arc of a circle.

2) CA motion
The position of

2
P(t)= Po(0)+lVo(0)+%1"' where v, (0) is the initial velocity

the observer at any time t is

and r:[yx Yy ]T is the (non-zero) acceleration vector. The
relative position of the target with respect to the observer is
2
Por (t) =Por (O)+tVOT (0)—%1" (1)
Without loss of generality, we will assume that y, <0 and

7, =0. Indeed, a suitable rotation of the entire scenario

allows us to be in this case.! This assumption will make easier
the following observability analysis.

—sin ZT" —cos 4T
1 The matrix of this rotation is | cos ZI" —sin ZT |.

D.Rendezvous routes in CA motion

The observability criteria when the observer is in CA motion
will be shown to be linked to the rendezvous (or collision)
route in Sections I11. C. (BOTMA) and 1V. B. 2. (ROTMA).

Definition: the rendezvous route
The target and the observer are said to be on a rendezvous

route (RDVR), when they are in the same place at a time t; .

Actually, this rendezvous instant is purely virtual: before
t=0 and after 7, O and T were and will be free to choose

their own trajectories. Note that this motion model is not the
pursuit curve motion, which has not been studied in the TMA
observability problem, from our knowledge.

1) The two types of RDVR

Proposition 1: General properties of RDVR
If O and T are on an RDVR, then
- Either p_.(0), V,, (o) and T are collinear,

- Or p. (o) and T' are noncollinear, and v (o) and
T are noncollinear.

Proof:

O and T collide a t, if and only if
. 1

Xor 0)+1%r (0) =517 =0 D

Yor (0)+ te yOT (O) =0 (3)

If y,,(0)=0, then (3) implies that y_(0)=0. The vectors
P,;(0), V,, (0) and T are collinear.

Else, y_(0)=- yo; (0) £0- In other words, P, (0) and I are

noncollinear, and v (o) and T are noncollinear.

QED.

Definition: The two types of RDVR
The RDVRs are called rendezvous routes of type | (RDVR-I),
when P, (0), V,;(0), and T are collinear. When P, (0) and

I are noncollinear, and Vor (o) and I are noncollinear as

well, the RDVRs are called rendezvous routes of type Il
(RDVR-II).

Note that for the RDVR-II, p_ (o) and v, (0) can be

collinear. Fig. 3 and Fig. 4 depict an example of RDVR-I, and
of RDVD-II, respectively. We can notice that the bearings are
constant for the RDVR-I whereas they change in time for the
RDVR-11. We will see why and how subsequently.



collision

North (km)

T )
A+
2+
3 ‘ ‘ ‘ ‘ ‘
-5 -4 -3 -2 -1 0 1 2
East (km)
Figure 3. Example of RDVR-I.
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Figure 4. Example of RDVR-II.

The converse of Proposition 1 is given in the following two
propositions.

Proposition 2: Condition of RDVR-I1
Assume that P (0), V,,(0) and T are collinear; that is,

P,;(0)=nT (with »-0) and v_ (0)=AT. O and T are on an
RDVR ifand only if 2> >-27.

Proof:
O and T are on an RDVR, if and only if
Xor (0)+t, %o (0)—1%2}& —0 (we do not have any equation with

the y-component since Yy = 0). This equality is equivalent to

(77+/1tc—;t02j y,=00r t?—2At, -2 =0.

Hence, O and T are on an RDVR if and only if the equation
t? —2At—25 =0 has one or two real roots (one of them is t_),

that is, if and only if the discriminant A =2 + 25 is positive.

QED.

Obviously, the assumption “P,_(0), V. (0) and T are

collinear “ is not sufficient to characterize an RDVR-I, but
implies that the bearings are constant. Conversely, if the
bearings are constant, the target and the observer are not
necessarily on an RDVR-I.

Let us note that in this case, the bearings are piecewise equal

to +7 , and Proposition 2 remains valid up to a rotation, that
2

is, for g(t)=constant up to t . Note also that two rendezvous
instants may exist (depending on A). In Fig. 5, an example of
such a situation is given: The target starts at [-4000 0]T (m)

with a velocity of [20 2] (m/s); the observer starts at
[0 o] (m) with a velocity of [10 2] (m/s) and its
acceleration vectoris [-0.0416 O] (m/sz).

1,

05" rendezvous >

| .

North (km)
=)
(4]

s

-2 L L L L L
-25 -20 -156 -10 -5 0
East (km)

Figure 5. Example of RDVR-I where the target and the
observer have two RDVs.

Proposition 3: Condition of RDVR-11.
Assume that P (0) and I" are noncollinear, and v, (o) and

T" are noncollinear as well.

O and T are on an RDVR if and only if
Vor (O . .

Vx = 2 ygT( )[XOT (O)yOT (0)_ Xor (O)yOT (0) ]
Yor (0)

Proof:

Equation (3) implies that t =— Yor (0) Substituting into (2),
Yor (0)



we get X 0 _ yOT (o) X O _1 yéT (0)
OT( ) yOT(O OT( ) ZYST(O)}/X
Yor (0)

Vx = 2 yz (0)[XOT (O)yOT (O)_ Xor (O)yOT (0) ]

oT

—0o- We end up with

~—

QED.

Note that, an unique RDV instant exists for an RDVD-II.

In the two following propositions, we give a criterion based on
the measurements (range or bearing), which allows us to know
which type of RDVR we are on.

2) Criterion of RDVR-I

From the remark following Proposition 2, when the target and
the observer are on an RDVR-I, the bearings are constant. In
this case, the trajectory of the target is not observable in
BOTMA. In ROTMA, we will see that this type of route must
be considered in the observability analysis (see Proposition
15).

The following proposition gives us a criterion of RDVR-I
based only on range. In practice, when the measurements are
corrupted by additive noises, it can help to construct a
statistical test to decide if the two mobiles are on an RDVR-I.

Proposition 4: Criterion on range of RDVR-I

The target and the observer are on RDVR-I if and only if a
scalar ¢ exists such that, for te [o, Tf] . either
r(t)—%tzyx =0 +th or r(t)+%t2yx =1, +tr and

r’>-2r,7,-
Proof:

First, assume that the target and the observer are on an RDVR-
I

From D), we have

2
XOT(t):XOT(0)+tXOT(O)_%7x :(77+t/1_;t2j7x’ and
r(t):\ Xor (t)\ We denote by t, and t, (with ¢ <t,) the roots
of the equation x__(t)=0. Note that they can be the same.

If[0,7,] < [t.t,], then r(t)=—x, (). If T, <t,, or t, <0
then r(t)=x., (t)- SO, we get the result.

Conversely, suppose now that either r(t)—itzy =r,+tr, or
2 X

r(t)+%t27/x =r,+ti forte [0, Tf] and 2 > —2r, y,. Letus

prove that the observer and the target are on an RDVR. To

avoid repetition, we will only consider the case
r(t)+%t2}/x =r+trand r?>-2r 5 .
We have to solve the following  equation:

Py (0)+tVy, (0)—%t2 r

2 2
1,

=lrR+tr——t .

(0 2 yxj

After developing the left and right expressions and equating
the coefficients of each power of t, we end up with a system of
four equations:

H Por (O)H = ro2 (4)

PJT (O)VOT (O) =nf (5)
[Vor O)]* = PE (@) = 1% —1, 7, Q)
Vo (0)r=ty, )
In terms of components, they are equivalent to
X3r (O)"' Yor (O) =1y (8)
Xor (O) Xor (0)+ Yor (0) Yor (O) =t (9)
Xc2>T (0)"' yCZ)T (0)_XOT (O)7x =r? —To7x (10)
XOT (O)}/x = ryx (11)

From (11), we get x_,(0)=r. Substituting into (9) and (10),
we obtain

Yor (O) yOT (O) = _(XOT (O)_ o ) r (12)
yéT (O) = (XOT (0)_ I )Vx (13)
Now, from (8), we have

ycznT (O) = _(XOT (O)_ rO)(XOT (O)"' I’o) (14)

Taking the square of each side of (12), after replacing yZ (0)
and y2. (o) with their respective expressions given by (13) and
(14), we get

_(XOT (O)_ ro)2 (XOT (O)+ ro) Vx = (XOT (0)_ fo )2 P (15)'

Let us examine two cases:

Case 1: x, (0)¢ r,

Equation (15) is equivalent to Xor (0) = _(r0+r2].
Vx

Substituting  into finally  get

22\ .2
Yor (0)=—[2r0 +rjr'

X X

(14), we

.2 R

Consequently, r I >q; that is, 2r,y, +r*<0.
Vx

But, by assumption, we have 2r y +i*>0. Hence

21y +2=0. (16)

It follows that y_ (0)=0; hence x2 (0)=r?. We
conclude that x_ (0)=-r,. Reporting this value into
(12), we get ¢ = 0. From (16), we have r =0, which
is incompatible with the assumption P, (t)=0 for
t [0, T,] - This must be discarded.



Case2: x,, (o): fy

From (13) and (14), y,.(0)=0 and y, (0)=0; thatis
P,;(0), V,(0) and I are collinear. With the
inequality r2 > -2r, 5, being equivalentto 2 > -2,

the target and the observer are on an RDVR-I, from
Proposition 2.

QED.
3) Criterion of RDVR-II

Similarly to ROTMA, BOTMA observability conditions (see
Proposition 9) need to have a criterion of RDVR-II.

Proposition 5: Criterion on bearing of RDVR-I1
O and T are on RDVR-II if and only if tan g(t):ﬂo + t, With

=0,
The respective values of 4 and ,, are Xor 0) , and
Yor (O)
Yor (O) XOT (0)_ yOT (O) Xor (O) .
Yor (0)
Proof:
We have to prove the equivalence

Vor (0) . .
yz (O) [XOT (O)yOT (0)_ Xor (O)yOT (0) ]

or
. 1
Xor (0)+t Xor (0)_§t2 7x
Yor (0)+1Yor (0)

If tand(t)= u, + 4t then

tand(t)= u, + ut =y, =2

We have {5 o(t)

Kor 00+t 0027 = [Yor (04 Yor O] s + st

__ Yor (O) is a
Yor (0)
get the

As a root of

consequence, t
(3

We equality

. 1
Xor (0)+t Xor (O)_Etz Vx

Vx = 2 ygT (O) [XOT (O)yOT (O)_ Xor (O)yOT (O) ] '

Yor (0)

Vx = 2 iczﬁ Eg; [XOT (O)yor (0)_ Xor (O)yOT (O) ] !

oT

Conversely, if

Yor (0)
Xor (0)+1 Xor (O)—%tz 7, - Hence, there are two real numbers ;;,

then we readily verify that ¢ _ Yor©) is a root of

and ,, such that

Kor 00y (0)- 3t 7, =[¥or (0)+Jor 0] + ]

QED.

To resume,
the two mobiles are on an

<tané(t)= g, + 4 t, and g 20,
the two mobiles are on an RDVR-l — tan g(t):

RDVR-II

Ho+

It is well known that when the observer is itself in CV motion
and the bearings are constant, the observer will meet
eventually the target (the collision instant can equal to infinity
if the two routes are parallel. To avoid this collision hazard
well known by sailors, the observer must maneuver. However,
if it accelerates and if the bearing tangent is linear, it may still
remain on a rendezvous route.

I1l. OBSERVABILITY CRITERIA INBOTMA

Let us recall that in BOTMA, the target trajectory is
observable if and only if the FIM is nonsingular. We give
hereafter two general results, necessary to prove observability
when the trajectory of the target is a combination of CA and
CV motions (see proposition 11).

A. Two general results
Proposition 6: Observability equivalence between two
observers in BOTMA
Let there be two observers measuring the same bearings. If the
target is observable from one, it will be observable from the

other (or equivalently, if it is unobservable from one, it will be
unobservable from the other).

Proof:
We recall that BOTMA has a linear version, whatever the
trajectory of the ownship. Indeed, the noise-free measurement

equation H(t)ztan‘{ XT(O)+tXT_XO(t):| can be transformed
Yo (O)+tYT - YO(t)

into the linear equation

[cosa(t) —sind(t) tcosdt) —tsind(t)]X,

=X, (t)cos B(t) -y, (t)sino(t), Vte{t,, - t, }

or, in short, A(9)X, =z, where the k-th line of A(g) is

[coso(t,) —siné(t,) t cosdlt,) —t.siné(t )], and the k-th

element of Z is x,(t, )cosO(t, ) - Yo (¢, )sinA(t, ) see [3, 11, 16].

The observability is hence brought by the set {a(t,),---, 6(t, )}

which means that if two observers collect the same set
{6,),-, 6(t, )}, if the target is observable from one, it will be

observable from the second one. In this case, the state vector is
computed by X, =[AT(0) A(9)]'Z -

QED.

Proposition 7: Observability equivalence for time-reversed
bearings

Let there be two observers #1 and #2. Observer #2 measures the
same bearings as observer #1, but in the inverse temporal
order, that is 6(2)(tk):9(1)(tN _tk), where 5’(i>('fk) is the bearing

measured at time t, by observer #i. If the target detected by



observer #1 is observable, then the target detected by observer
#2 will be, and the converse.

Proof:
Let us define the matrix A(e(i)) whose k-th line is

lcos@,(t) —sing,(t,) tecosgylt) —tcsing, ()]  Let
prove that Rank{A(e )} Rank{ ( )} We note that the k-th
line of A(.g(z)) is

[cose(z)(tk) —sind,t,) t cosby,(t) -t sine(z)(tk)]
= [005‘9(1)(tN _tk) _tk) ty COSH@)(tN _tk)

us

—sin gty —t,sin Gty —t, )

We construct a third matrix denoted A by permutation of the
lines of A(e(z)), that is, the first line of A is the N-th line of

A(e(z)), the second line of A(H(z)) is the (N — 1)-th of A(e(z)),

and so on. In other words, we flip the matrix in the up/down
direction. Obviously, Rank{,&}: Rank{A(e(z))}- We note that

the first two columns of A are the first two columns of A(e(l)).
The third (resp. fourth) column of A is ty multiplied by the
first (resp., second) column of ty , minus the third (resp., fourth)
A(H(l))- Rank {A }: Rank {A(H(l))}-
Rank {A(g,))|=Rank{A(g,)}- We readily
deduce that Rank{A" () Alg )= Rank{AT (6, A0, )}

column of Hence,

Consequently,

QED.

Note that these properties cannot be extended for any
measurements such as frequency measurements because the
Doppler effect is not time-reversible.

B. Observer in CT motion

The CT motion was defined in Section I11.C.1. We propose the
following result when the noise-free bearings are continuously
available during [0, T, ] -

Proposition 8: Observability in BOTMA for CT motion

If the observer is traveling along an arc of a circle, then any
target moving with a constant velocity is observable in
BOTMA.

Proof:
Suppose that a ghost (G) moving in CV motion is detected in
the same bearings as the target forany t < [0, T, | -

The equality g(t)=P,, (t)= 2P, (t) is equivalent to

Poe (t)=k(t)P., (t) for certain k(t)>0
R.(t)-R ) =kO)[F ()-R: ()], vte[o,T,]
@PG(t)= ()P )+ [k(t) -1, ()

sin(wt +¢)}

Ad PG(O)+tVG ( [PT( )+tV ] [k(t)_1]|:cos(a)t+(/7)

< k(t)=1

In other words, no such ghost exists: the trajectory of the
target is hence observable.

QED.

Note that if the observer’s trajectory contains at least one arc
of a circle, then the trajectory of any target having a constant
velocity is observable in BOTMA.

C. Observer in CA motion

Proposition 9: Observability criterion in BOTMA for CA
motion

Assume that the observer is in CA motion.

The target’s trajectory is observable in BOTMA if and only if O
and T are not on an RDVR and the bearings are not constant.

Proposition 10: Set of ghosts in BOTMA for an RDVR-11
Assume that the observer is in CA motion.
The target’s trajectory is unobservable if and only if

tano(t) = p, + st -
If 4, =0, the target and the observer are on a RDVR-II and

the ghosts are on a RDVR-Il with the observer. Their
trajectories are defined by X (0)= X, (0)+ aZ, where « is

a scalar and = is a vector in the null space of the matrix

Yor(0) -x:(0) 0 0

Yor (0) - T( ) Yor(0) O], The values of 4, and
0 2 0 0
0 0 0 1

are given in Proposition 5.

If 4 =0, the trajectories of the ghosts are defined by
Xa(0)=X,(0)+ =, with =[5 0 & o], for any gand
g suchthat /& #0.

Proof of the two previous propositions:

We have to solve the equation g(t, X )=6(t, X, )- Since the
implication

0t, X)=0(t, Xor) = tand(t, X)=tand(t, X,; ) holds, we
concentrate our effort on the equation
tané(t, X)=tand(t, X, )- We define the components of X

by [x y x y]".
Two cases must be studied:

Case (1): YOT(O);‘éO or YOT(O);EO'
tand(t, X )=tano(t, Xo; ) =



t? t?
X+tX—— Xor (0)+ 1%, (0)——

+ 27x: OT( )+ OT() 27x,f0ranyt in [O,Tf]-
Yor (0)+t¥¢; (0)

o (mx_jyxj[yoxo)ﬂym(o)]

y+ty

. vtelo,T,]-

_ {XOT (0)+t gy (0)—t22yx}(y+t y)

After reordering the terms of this equation, we get
Xor (O)y =Yor (O)X
Xor (O)y +Xor (O)y =VYor (O)X +Yor (O)X
XOT (o)y_;/?X y= YOT (O)X _LZX Yor (O)
Y=Y (0)

We end up with the system
MX =B )

Yor (O) —Xor (O) 0 0
with B Yor (O) —Xor (0) Yor (0) 0 and

o - —y,(0) 0

0 0 0 1

0
| w00
R Xor (O) Yor (0)_ LZX Yor (O)
Jor (0)

We note that X is a solution of (X).

The vector x . is the unique solution of () if and only if
det(M)=0, in other words, the trajectory of the target is

observable. Conversely, the trajectory of the target is not
observable if and only if det(M)=0. Consequently, the

discussion is about det(M).

We readily get

det(M) = —Xor (0) Y57 (0)+ Yor (0)%or (0)Yor (0)+ ¥5: (0)

1
2
If det(M):O, we have to discriminate the subcase where
yor (0)=0 from the subcase . (0)=0.

If yor(0)=0, then x,.(0)=0 - The case x,(0)=0 means that
the target and the observer are co-localized at the initial time.
This does not satisfy the assumptions given in Il A. This case
is hence discarded.

If Yor (0) #0, then Vx = 2 y(z)T (O) [XOT (O)yOT (O)_ XOT (O)yOT (0) ] ;

Yor (O)

that is, the observer and the target are on an RDVR-II (cf.
Proposition 3). Since the acceleration y, is not equal to zero,

Yor (0) cannot be equal to zero. As the consequence, the first

two columns of M are not collinear. We remark also that the
fourth column of the matrix M cannot be simultaneously

collinear with another one, so the rank of M is equal to 3.
The set of solutions of (X) is the set of the vectors defined by
Xog =Xor + @2, Where ¢ is a scalar and

:[51 g & o]T is a nonzero vector in the null space of

[1]

M. We verify that ¢(t) has a special form:
o(t)=tan™(u, + 14t). with py = 2or 0) and
Yor (O)
_Yor (O) Xor (O)_ Yor (O) Xor (0) .
Yor (0)

tZ

0)+1Xog (0)——
Note that o0 (0)+ 00 (0) 2" 4t I8 equivalent to

; = H,
Yoe (O)+ tYos (0) ’

2

Koo (0)+ Ut 0)= 75 = s+ 448) Yoo (0)+ Yo 0):

Hence, at time ¢ __ Yoe(0) __ ¥os(0) (which depends on the
yOG(O) yOT(O)

relative coordinate yOG(O) of the considered ghost), we get

Xoo(t.)=0 and y..(t.)=0. As a consequence, all the

ghosts and the observer are on an RDVR-II (but at different
times of rendezvous).

Case (2): yor (0)=0 and yor (0)=0; thatis, P, (0), Ve (0) and
I" are collinear. Note that
O and T are not necessarily on an RDVR-I.

Then g(t, X)=6(t, Xo;) :i% that is,

& y+ty=0;
y=y=0.

The bearing rate is zero and the set of solutions is the line of

sight of the target: any ghost traveling in this line (the X-axis)

is detected in the same (constant) bearing [i % j as the target
of interest. The target’s trajectory is not observable.
QED.

D. Observerin CV and then CA motion and the converse

Observability must be studied only when the target is not
observable during the CA motion of the observer, that is,
when O and T are on an RDVR of type Il or the bearings are
constant. To do this, we need the notion of an “angle-
equivalent non-maneuvering observer” [7] and [12] when O is
in CA motion; the existence of a virtual observer (E) in CV
motion continuously collecting the same bearings as the
observer will be proved in the sequel.

In the rest of the paragraph, we will assume that
tand(t)= 1, + 4 t (during the CA motion only).



Lemma 1

If the observer and the target are on a rendezvous route of
type Il or the bearings are constant, then a virtual observer,
located at p,(0) at time t=0, in CV motion, continuously

collecting the same bearings as the observer, exists.

Proof:

We denote in this proof the initial position and the velocity of
a virtual observer in Ccv motion by

P(0)=[x:(0) ye(0]"=[x,(0) yoO]" and v =[x y]",
respectively.

If the bearings are constant, then y_(0)=y,(0)=0. The virtual
observer (in CV motion) such that p_(0)="P,(0) and Vv, =V,(0)
collects the same bearings as O.

If O and T are on a rendezvous route of type Il, suppose that a
virtual observer E in CV motion exists. The equality

olt)- tan‘l[ Xor (0)+ ):(ET J implies that
Yor (0)+t Yer

Xor (0)+t Xgr Consequentl yjer =0, and
Xor Ol e _ bt quently e =0,
Yor (0)+t Yer oA

Xer =" Since = Yor (O)XOT (0)_ Yor (O)XOT (0) (see
Yor (O) Yor (O)
Proposition 10), we get y_ =x__(0)-y,, (0) %or(0). We end

Yor (0)
. (0)a v (0)%or ©)

up with ¥o(0)+or 0) Yor (0)|. Note that this virtual

Yr
observer is unique.

QED.

Hereafter, we propose an example of a scenario where the
observer has a higher order dynamic than the target and the
target’s trajectory still remains unobservable. We have chosen
a scenario with an RDVR-1I (hence satisfying Proposition 3):
Po(0)=[0 0]",V,(0)=[10 2]" (mss),

P, (0)=[3000 4000]1" (m),and V, =[-6 —7]" (m/s)

with » =-0.0416 m/s?. The duration is 6 minutes. Figure 6

depicts the maneuvering observer together with the target
(thick lines) and four ghosts (thin lines). Moreover, the
trajectory of the virtual observer E is plotted. Four lines of
sight are given.

5 G3

collision

North (km)
N

2 3
East (km)

Figure 6. Non-observable trajectory in BOTMA, the
target, some ghosts, and the bearing-equivalent-non-
maneuvering observer.

Proposition 11: Observability criterion in BOTMA for CA-
CV and CV-CA motions

Assume that the observer is successively in CV motion and in
CA motion (or in CA motion and in CV motion). The target’s
trajectory is observable in BOTMA if and only if the bearing
rate is non-null (that is, the bearings are not constant).

Proof:

We have only to consider the case where the target’s trajectory
is not observable during the maneuvering phase.

The first leg starts at time t=0 and ends at time t=T,. At this

time, the CA motion starts and finishes at time t=T,.

If the bearings are constant during this phase, then
P.(0)=P,(T,) and v, =V,(0) (see lemma 1). We deduce that

the bearings during [0,T,] are also constant, that is, the

respective trajectories of the virtual observer and of the target
are on the same line. The target is non observable.

If O and T are on an RDVR-II, following Lemma 1, the
observer collects the same bearings as the non-maneuvering
observer E. Hence, the observer collects the bearings acquired
by an observer whose trajectory is composed of two legs: the
first one is defined by v (0), and the second one by v, . Note

that v, cannot be equal to Vv, (0), otherwise y, =y,(0) and
consequently 5 =0 (see Proposition 3). In short, the observer
acquires the same bearings as the ones collected by a leg-by-leg
maneuvering observer. Following [10], if the bearings are not

constant, the target’s trajectory is observable from the
equivalent observer E. Proposition 6 completes the proof.

Proposition 7 allows us to determine when the observer is first
in CA motion and then in CV motion.

QED.

IV. OBSERVABILITY CRITERIA INROTMA
We proved in [13] that the target’s trajectory is not observable
in ROTMA when the observer is in CV motion. Actually, in



this case, the ROTMA problem has a linear version, similarly
to BOTMA. Indeed, even if the range does not depend linearly
on the vector X, the square of the range can be expressed in
linear form, relative to another vector denoted Z:

r(t)= [ Por (0)+ tVr = F2(t)= H R (O)HZ +2tVI Py (O)+t2HVoTH2 vt

) H I:’OT (O)HZ Zl
We define - _ VIR, (0)|=|Z, |
ol ] L2

So, r*(t,)=[1 t, ]z, k=123 .

This is another proof of the non-observability of the target’s
trajectory in ROTMA, since this trajectory depends
(mathematically speaking) on a three-dimensional vector,
whereas the trajectory is defined by X. The vector Z is
nevertheless observable: it defined the set of solutions given in
Section 1V-B of [13], which is an uncountable set (due to this
linearity).

In the two next subsections, we will consider two types of
kinematics of the observer: CT motion and CA motion.

A. Observer in CT motion

Proposition 12: Observability in ROTMA for CT motion

If the observer is traveling along an arc of a circle, then any
target moving with a constant velocity is observable by range
measurements only.

Proof:

Again, the proof is made in continuous time as in BOTMA.
Suppose now that another target G moving with a constant
velocity, say V,, is at the same range as the target of interest

T. The square of the range at any time t is

r#(0) =[x ()= xo (W +[y2 (0= Yo (O =[x )= %6 )] “+ [y (0)- yo O I

=
[x: (0)+t% — psin(wt+p)]* +[y; (0)+ty, - pcos(wt +9)]’

=[x (0)+t%s - psin(ot+ )" +[ys (0)+ys — peos(wt+g) |
Vi

or, equivalently,
X (0)+ ¥ (0)+ p* +t (5 +¥7 )+ 2t[x: % (0)+ ¥ ¥, (0)]
~2p[x; (0) sin(et + @)+ y; (0) cos(wt +¢) ]
—2t p[X, sin(wt + @)+ y; cos(wt +¢)]
= x(0)+¥2(0)+ p* +t (¢ + 92 )+ 2t [k X6 (0)+ Ve Yo (0)]
—2 p[x4(0) sin(@t + @)+ y4 (0) cos(wt + )]
— 2t p[%g sin(@t + @)+ Y, cos(wt + ) |, V.
This implies the following five equalities:

10

0 120)=40)+ 20
TR
X% (0)+ Y ¥ (0) = ¥ X (0)+ ¥ v+ (0)
X< (0)sin(@t + @)+ y, (0) cos(wt + @)
=% (0)sin(ot + @)+ y, (0) cos(wt +¢) (17)
% sin(at + )+ Y, cos(wt + @)
= %, sin(@t + @)+ Y, cos(wt+ ).

vt

18)

Equations (17) and (18) are equivalent to

ool o)-mo-0 ve

. T H
sin(wt + o) Vg -V, ]=0 vt - Since sin(ot +¢) spans the
cos(wt +¢) cos(wt +¢)

whole two-dimensional space, P,(0)=P,(0) and v, =V, .

QED.

Obviously, if the observer’s trajectory contains at least one arc
of a circle, then the trajectory of any target having a constant
velocity is observable in ROTMA.

B. Observer in CA motion

We proved in [13] that, when the observer has a leg-by-leg
motion, the trajectories of the ghosts are obtained by orthogonal
transformations of the trajectory of the target of interest. The
matrices of these transformations are shown to be constant (they
are independent of time). They are denoted H.

Here, the matrices of these transformations can depend on time.
This makes the analysis much more complex. In the following
subsection, two examples are given: one with a constant H and
another with a non-constant matrix denoted H(t).

1) Examples of constant and non-constant orthogonal
transformation matrices

First of all, we consider the case where P, (t) is not collinear

with T'. Let us prove that a ghost-target exists. Indeed,
consider the time-dependent vector defined by

2
Py (t)= H|:POT (0)+tVy, (O)—tzl“} for some orthogonal (and

constant) matrix H. The equality

2
POG(t):POG(O)thVOG(O)_%r holds if and only if

Poo(o): H POT(O)’ VOG(O): HVor (O)’ and '=HTI. This
last equality implies that H is the orthogonal matrix of the
symmetry around the line spanned by the vector I'. This
constant orthogonal matrix will be denoted S in the sequel.
Hence the vector POG(t) defines the trajectory of a ghost-

target.
We can conclude by the following proposition:



Proposition 13
If P;(0) or V., (0) is not collinear with T', then the target is

not observable.
Let us present an example of this situation, depicted in Fig. 7.

At the beginning of the scenario, the observer starts at
[0 0] with an initial speed of 5 m/s and an initial heading of
90°. Its  acceleration is the constant  vector
[=[-0.006 0.002] (m/s?). The target starts at [0 15]

(km) with a speed of 4 m/s and a heading of 0°. The duration
of the simulation is 45 min. Note that with an ad-hoc rotation,
we can be again in the case where y =0.

251

20-

R

North (km)

15 I I I I I I I I ]
-20 -15 -10 -5 0 5 10 15 20 25
East (km)

Figure 7. ROTMA: The observer in constant acceleration
motion, the target, and a ghost.

Conversely, if P (0),V,,(0), and T are collinear, then the

target is not necessarily observable. Let us give a non-obvious
example:

0

Let us consider an observer starting from {
0

} with a certain
velocity and the acceleration vector F:{_ 2} and a target
0
2
whose relative motion is defined by POT(O)=|:U } (for a
0

certain value u=0) and v__ (o)= {0} . Then a ghost exists and
0

2
its relative trajectory is defined by pOG(O):{_U} and

0 t*
Vo0 |- We e )= (0) 00,0 T

readily check that P, (t)=H(t)P,, (t) for the rotation matrix

11

1 |-u*+t?  -2ut
H(t)=—— :
() u2+t{ 2ut —u2+t2}

The second example leads us to think that analyzing
observability must not be reduced to seeking constant
orthogonal matrices, conversely to the case of a leg-by-leg
trajectory of the observer [13].

2) Necessary and sufficient observability condition

The following analysis will be conducted for the relative
motion with respect to the observer’s trajectory. The question

is to identify, if they exist, vectors X =[x y x y|" such

that
X+tXx| t?
——T |=||P(t
LHY} o

Such a vector will be called a solution. The unknowns are the
initial relative ghost-target position P,.(0)=[x y]|" and its

. vt (19

initial relative velocity V. (0)=[x y]

From the above subsection, we know that the set of solutions
contains, of course, the vector defining the trajectory of the

target, that is, XOT =[XOT (O) Yor (O) XOT (0) YOT (0)]T and
the vector

(I 2 ®3 )X or = [XOT (O) —Yor (0) XOT (O) - yOT (0)]T , Where
the symbol ® denotes the Kronecker product and 1, is the
2x 2 identity matrix. For convenience, the vector (|2 ®S )xOT
is denoted X 5. . It defines the trajectory of a ghost.

We will show below that most of the time, other ghost-targets
exist and the vectors defining their trajectories are linked to
X, Dy a time-dependent orthogonal matrix 1, @ H(t).

Before starting our analysis, we give a fundamental result in
the following lemma: it establishes the equivalence between
observability in discrete time and observability in continuous
time. Therefore, we will conduct our analysis in continuous
time, but the results will be valid for discrete time.

Lemma 2
If four different times 7, in[0,T, | , n=1,2,3, 4, satisfy

(20)

2
Pos (O)"‘ TwVos (@‘%F = H Por (Tn )H

then for any t in [ 0, T; ]

vteloT] @)

t2
POG (0)+tVOG (0)_Er = H POT (t)

Proof:

First of all, note that eq. (21) is equivalent to
2

[P OF @

tz
POG (O) + tVOG (O)_ E r




Each term of this equality is a polynomial function of degree
4:

2

=a; +2b;t+c,t

2

2
POG(0)+tVOG(O)—tEr 2 _g, t3+l;rt4

, with

8 =[Poc ()] = X* +y* (23-a)
be = Poe (0) Voo (0)= XX+ Yy (23-b)
Co =|Vos O ~Pos (0) T =% +y* —xy, (23-¢)
dG :VOG(O) I'=xy, (23-d)

2
[Py ()] = a; +2b; t4c, 2 —d; t3+r4t“,with

a; =P )" =12 (24-a)

by =Py (0)'Vr (0)=r, v, cos(d, —h, ) (24-b)

¢; =|Vor (0)]* = Pyr (0)' T =VZ —1, 7, 5in 6, (24—c)

d; =V (0)'T =v, y, sinh, (24—-d)

Eq. (20), which is equivalent to
‘[2 2

=Py (7)), n=1,2,3,4
gives us four instants where these two polynomial functions
take the same values. Because they have a common coefficient

Il
4

Poc (0) +7Vos (O)_ )

(the 4™ degree coefficient which is ), these two

polynomial functions are equal.
QED.

Eq. (23) and (24) yield the following lemma on which the
search of ghost-target is based:

Lemma 3
The set of solutions of (19) is defined by the following
equations:

X +yr =17 (25)
XX+ Yy =1, v, cos(@, —h,) (26)
X*+y?—xy, =vicos’h —r,y,sing, (27)
Xy, =V,7,sinh, (28)

Note that eq (28) implies x = x, (0)-

The next proposition characterizes the set of ghost-targets. the
set of solutions among the set of four-dimensional vectors
whose first component is a root of a certain quadratic equation
given below, and the third component is x__(0).

Proposition 14

The set of targets at the same range as the target of interest is
composed by the target whose trajectory is defined by
Xoo :(|2®s)x0T and by those whose trajectories are

definedby [x y x ], suchthat

12

a) x is equal to satisfies

%or (@) or

ve ~sin(@, —2h,)-rZ =0

2

v
X2 + L X+T,
X X

b)and x= x,, (0).

Due to its length, the proof (based on Lemma 3) is given in
Appendix A.

The two other components of X, thatis, y and y, remain
to be identified using Egs. (25), (26), and (27).

For convenience, we now define Q(x)=x?+ g x+r, #S —r?

with g =
Vx
By convention, the heading h, is zeroed when v, =0.

Ve and s =sin(g, —2h, ). Note that g is negative.

Now, we are able to give a necessary and sufficient
observability condition.

Proposition 15: Observability condition in ROTMA for a CA
motion

Assuming that the observer is traveling with a constant
acceleration vector, the trajectory of the target is observable
from at least four range measurements acquired at different
times if and only if O and T are on an RDVR-I.

Proof:
Firstly, suppose that the trajectory of the target is observable.
From Proposition 13, P, (0), V., (0), and T are collinear, so

P, (0)=5T and V,,(0)=AT. In terms of coordinates, this

yields XOT(O):nyx’ XOT(O):AJ/X’ yOT(O):O ' and
Yor (0)=0. Hence

%51 (0) i — rsing —
B="0") 1S =rsin(g, £ 7)=-1,sin6, =X, (0), and

Vx
consequently
.2 52

Q-+ XDy 0Oz ()

Formally, the roots of Q(x)=0 are and

X= Xort (O)

)
X = —Xor (o)_XL(O). Since the trajectory of the target is
7x
x2.(0) .
(0)— 22/, in other words,
7x

observable, either XOT(O):

—Xor

2
Xor (0) is a double root (this corresponds to n:_i), or
2

.2
— Xor (0)_ Xot (0) is an unacceptable physical solution; that
7x
i 2
is |:XOT (o)+XéT(O)} > r2. Because r2 =x3;(0), this
7x

inequality is equivalent to 4?>>-27p. The target and the



observer are on an RDVR-I from Proposition 2.

Conversely, suppose that the target and the observer are on an
RDVR-I; thatis P (0)=#T and V (0)=AT, and 2 > -25
. We have

[XOT (O) Yor (O) Xor (0) Yor (0)]T = [77 7x 0 Ay, O]T'
Under this assumption, the scalars a,, b and , c,, defined in
(24), take the following values
a ="yl by =Anyl, ¢ =(#—n)yi. So, the set of
equations (25), (26), and (27) becomes

2

X4yt =0’y (29)
AV X+ Yy =Anyy (30)
Zyieyi-xy =(Z-n)t @)
which is equivalent to

y =n'yi—x (32)
W=27ny,-x) (33)
y2:7/x(x_777x) (34)

Taking the square of (33), we obtain y2y? = 22 y?(ny, —x ) -

Then using (32) and (34), we get
7 iy =¥ x=n7, )= 22 y2(ny,~xF . which can be

factorized into  —(ny, —xV (ny,+x)=2y (ny,—x)
(35).

If x=7y,, then (35) is equivalent to —(7ny, +x)=2y,,
from which we derive x = _(77+,12 )yx. Substituting into (32),

yz:[nz—(nwlz)z]ﬁ: that s,
y? =—/12(277+,12);/X2. As a conseguence, ,12(277 +/12) <0.
Let us consider the two following cases. (i) A =0. Then >0
and y=0 ; we deduce from (29) that x=-zy, . Reporting

we have

this value into (34), we get y*=-5y> . We deduce that
n <0 . Hence =0, which is incompatible with the fact that
r(t)>0,for te[0, T, ] . (ii) 2=0. Then 257+ 22 <0, but
by assumption, 27 +42>0. Hence 2;+42=0. We have
y =0. Now, from (33), we get x =7y, , which is impossible.
From this discussion, we conclude that the case x=7$y,
must be rejected.

Hence, x=7y, and consequently y=0 and y=0. The

trajectory of the target is observable.
QED.

Recall that the FIM in BOTMA and the FIM in ROTMA are
of the same rank. As a consequence, when O and T are on an
RDVR-I, the FIM is singular (since in BOTMA, the target
trajectory is unobservable). This is a nontrivial example of a
mismatch between the singularity of the FIM and the

13

observability (in ROTMA). A similar example was given in
[13], when the observer is zigzagging.

3) Unobservable case: construction of the set of ghosts

When the observability condition given in Proposition14 is not
satisfied, identifying the set of ghosts is interesting. We
propose to solve this problem by using the same approach as
previously, by exploiting the roots ( x,, x, ) of Q(x). To do
this, we need a first result.

We start with the following proposition:

Proposition 16: Existence condition of only one ghost in
ROTMA for a CA motion

Assume that the observer is in CA motion. One unique ghost
exists if and only if O and T are on an RDVR-II. Moreover, its

trajectory is defined by X3, .

Proof:

First, assume that O and T are on an RDVR-II; that is,
; 1 .

XOT(0)+thOT(0)_§tcz]/x =0 and yOT(O)+tcyOT(O)=O'

Any ghost is also on an RDVR-IlI with the observer.

Consequently, we have

x+tc>'<—%t§yX =0and y+t y=0.

We deduce that x +t x = x5, (0)+t %, (0)- Since x =%, (0),

we conclude that x=x,(0), and y=-y,(0) and
Y==Yor (0)
We have one unique ghost given by

X = [XOT (O) —Yor (O) XOT (0) - YOT (0)]T = XSG ’

Conversely, assume now that one unique ghost exists. We
recall that its trajectory is defined by X =[x y x y|* and

that x =X, (0).-

First of all, let us prove that x = x; (0). Indeed, if x = x,;(0),
then y=y=0 (otherwise, another ghost exists whose
trajectory is defined by X'=[x -y x —y|, which is in
contradiction with the unicity of the ghost). At this point, we
necessarily have X =[x 0 x%,(0) 0]" . Suppose that

Yor (O) #0 or yOT (0) #0. Then, the

[%r(0) —Yor(0) %5r(0) =Y. (0)]" defines the trajectory
of a ghost. Since the ghost is unique, we have

X = [X 0 Xor (O) O]T = [XOT (0) —Yor (0) Xor (O) —Yor (O)]T
, Which is a contradiction. Hence vy, (O): Yor (O): 0. To

vector

summarize, we have obtained X ., =[x.;(0) 0 %, (0) 0],

and X =[x 0 x,(0) 0]'. Consequently, x=x.(0),



which is in contradiction with the assumption.
X=Xor (0)
Therefore, Q(x.,(0))=0. Let us develop the expression of
Qxor (0)) :
Q(XOT (O)) = XgT (O)"' B Xor (0)+ f pS— I’02 )
with 5 Y7 and
7x
S =sin(g, —2h, )=sin «90(cos2 2h, —sin?2h, )— 2c0s @, sinh, cosh, .

Hence,

2

Q(XOT (O)) =—Yor (0)+ rpsin 6, Y

X
2
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We readily verify that the discriminant of Q(x)=0 is

A:(ﬂ—2r08)2+4r02(1—82), which is a positive quantity.

Hence the two roots are real and are given by X, :ﬂ
2

and x_ =M. Note that x, < X, .
2

We note that Q(r,)= 8T, (S +1), and Q(-r,)= A1, (S -1).
Hence, Q(-r,)>0 and Q(r,)<0. We deduce that
-, <x<r <Xx, and, as a consequence, that x, is
strictly positive.

+r, V—f[sin 190(0052 2h, —sin®2h, )—ZcosaO sinh, cos hr] QED.

X

2 o VE 2 02
=—y2;(0)+1,5in@, ~ (1+cos? 2h, —sin 2h, )
2

Lemma 4 will conduct our study according to the following
table:

Table I: Values of (x,, X, )

—2rov—rcoseosin h, cosh, X, X,
Case 1 X = X, =l
2 2
= —y2.(0)+2r,sing, cos?2h. Y© —2r, Y cosg, sinh cosh, | C8e2 | —hh <X <K X; =l
& 4 Case 3 X =1 X, =,
0). 0). . Case 4 X =— Xy >T,
= _yCZ)T (0)+ ZXL() yg)T (O) - ZyL() Xor (O)yOT (O) > - -
7x x Case 5 - <X < X, >y
Q(XOT (0)) =0=y,=2 z(zﬂ 28; [XOT (O)yOT (O)_ Xor (O)yOT (0)] Case 6 X =T X; >l
oT
,;]c%o[r)%r;ag_ltlo Proposition 3, the target and the observer are on  Racall that % +%=—f and xx,=r(8S—r). We

QED.

Here, the singularity of the FIM and the unobservability of the
target’s trajectory are consistent (see Proposition 9).

The following lemma provides us information about the two
solutions of the quadratic equation Q(x)=o, introduced in

Proposition 14. This piece of information will help us to

identify all the ghost-targets. We recall that
2

Q(x)=x*+px+r, AS—r1Z,  with =Y and
Vx

S =sin(, —2h,).

Lemma 4

The equation Q(x)=0 has two real roots defined by

y = A=A and x, = BB with

2 2

A=(B—2r, S} +4r2(1-S?). Moreover,

L XS X,

Proof:

deduce that Case 1 is the only case where v, =0.

Case 1: x, =—r, and x, =r,
The sum of the roots is zero, that is B=0
(v, =0); as a consequence,
Xor =[r,sing, rycosg, 0 0]

From (25), for x =x, or x=Xx,, we get y =0.

For x = x,, from (27), then y* + 1,y =—r, y, sing,,
or equivalently  y®=—r y (1+sing,). Hence
y=+/-1,7 (+sing,). We get two ghosts, given
-1,
0
0

+./-1, 7, (L+sing,)

these  two  solutions  merge
X=[-r, 0 0 0]' =Xq-

T

then

be= I g,

into

one:

For x=X,, from (27), then y?>=r, y (1-sing,).



But the right member of this equation is negative or
null (when gozﬁ), whereas the left member is
2

positive or null. We get one solution if g, T
2

X=[r, 00 0] =Xg-

In conclusion, in Case 1, if 0, ++7  we end up with
2

three ghosts, whose respective trajectories are defined

_rO
by X = 0 and X3, .
0
+./-1, 7, [L+sing,)
If 0, -7 we get two ghost-trajectories given by
2
_rO
0
X =
0

*-2n7,

The target is observable if and only if 0, = _r.
2

Case 2: —r, <x,<r, and x, =1,

In this case, x, r, =r,(8S—r,)and x,+r,=—4 .
Then necessarily, S =-1; that is,

90=2hr_% (mod 27). Note that in this case,

1+sing, _sin’h,_and 1-sing, — cos?h. .

r

Since X, —x, >0,weget S+2r,>0.

The root X = X, allows us to construct two ghosts: if
sinh, >0, then
| —A-h
ng_ﬂ(ﬁ"'zro)
Xor (0)
_8\/—7X(ﬁ+2r0)5in2 h,
I A
e-p(B+2r,)
Xor (0)
_—g\/—;/x(,6+2r0)sin2 h,

, with g=+1; else

For X=X,, from 27) we get

Xy =Vi -1y, SN+ 1y, =V +1, 7, (1-sing,),
which is equivalent to

Case 3:
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v

y? =vZcos?h, + 1,7, (1-siné,)=

We have cos2h, =-sing,. So, we get
2

y? =V?r(l—sin 0,)+ 1,7, (1-sing,)
=y, {'g(l—sin 0y)+ 1, (1—sin 90)}

:%7& (ﬂ"' 2r0)(1_5in ‘90)

=y, (B+2r)cos’h,.
The square y? being positive or null and the right
hand side term being negative or null, we have

rO
@, = = . That yields the vector x —| © | (which
2 Xor (0)
0

is equal to the vector defining the trajectory of the
target).

In conclusion, in case 2, if 0, # 7 then we have
2

three ghosts; else we have two ghosts (in case 2, the
target is not observable).

X =X=0
In this case, A =0 or equivalently S =1 and
S =2r,S.Because g isnegative, we get S =—1

(hence p=-25).

Firstofall, note that § = -1 < @, —2h, =—2 and
' 2
L=-21 &V, =-25y, -

From (25), we have y =0. Reporting x =r, into (27)
we get
Xor(0)+?
At yz :Vrz _X(Z)T(O)_ro 7, SiNGy + 1y 7,
= yc2>T (0)+ I (l—SiI”I ‘90)7x
=vZcos’h, +1,(1-sin6,)y,
=y |Bcos’h, + 1, (1-sing,)]

2 .
V=V _rOJ/XSInQO

=7, E(u cos2h, )+, (1—sin 6’0)} _

=7, {g(l—sin 6,)+ 1, (L—sin .90)}

=y [-r@-sing,)+r,(1-sing,)]
=0

Consequently, y =0.

5 (L+cos2h, )+ 1, 7, (L—sinG,).



Case 4.

We deduce a solution given by
X=[r, 0 %,(0) 0]

We verify that equations (25), (26), (27), and (28) are
satisfied.

In conclusion, in Case 3, the target is observable if

and only if ¢, :% (o h :i%)- Otherwise, two

ghosts exist, definedby X =[r, 0 x,(0) 0]
and XJ, .

X =0 and X, > Ty

As in case 2, we exploit the sum and the product of
the roots: —ryx,=r(BS—r)and x,—r,=—4 .
Then necessarily, S =1, which is equivalent to

8, —2h, :% (mod 27)- In this case,
M — COSZ h .

r

We note that 3 —2r, < 0. Again, from (25), we have
y = O .

From (27), we get
X 4+yi=Vi—r y,sinG, -1y, =V -ty (1+sing,),
which is equivalent to

y? =vZcos’h, —r, 7, (1+sing,)

V2 . We have

=?r(1+ cos2h, )—r, 7, (1+siné,)

cos 2h, =sing,. So, we get
2

y2 = V?’(1+ sin@,)-r, 7, (L+sin6,)

=7, {'g(lﬁtsin 0y)— 1y (L+sin 6’0)]

=27 (p 25 +sing,)

=7x (ﬁ_zro)cosz hr'
which is a positive quantity.
So, two ghosts exist, defined by

— rO
X 0
%or (0)

i\/7/x (ﬂ - 2I“O)COS2 hr

In conclusion, in Case 4, the target is observable if
and only if g, -_Z (< cosh =0;thatis h =+7Z
2 ' 2

). Otherwise, three ghosts exist:
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0 and X3 .
%or (0)
i\/;/x (B-2r,)cos®h,

Case5: —ry <x <I, and x, >r,

From Eq. (25), Yy =+./r>—X . Introducing this
value into (26), we get
y=+D oV COS(@O hr) X%or (0). This value also

satisfies Eq. (27) (see Appendix A2). Consequently,
we obtain the foIIowing two solutions:

\/72

l
X = %or (0)
A cos(@, —h, )-

2

X¥or (0)
Ny

g=-1, +1.
In conclusion, in Case 5, the target is never
observable. At most, three ghosts exist, given by

X
o 2 _y?
l
X = XOT(O)
roV C05(90 hr) XlXOT()
L \/ro X
e=-1,+1,and X5;.

This case includes the scenarios where T and O are
on an RDVR- 1.

, with

—

, with

Case 6: x, =r, and x, >r,

As in case 2, r x, = ro(,[i'S— O) and r,+x, =—4 -
Necessarily, S =—1 and x, =g —r,. The equality

S =—1 isequivalentto g, = 2h _r.
o2

The assumption X, >1r, implies that g+2r <0;

hence v, > /-2ry .
The component Yy is then readily computed:
=+ 175 +25)a-sine,

='_|'\/7/X (ﬁ_*—zr-o)cos2 hr )

From (25), we get y=0. So, two solutions exist,



I’0
0 . The
Xor (0)
J_r\/y/X (B +2r,)cos? h,
equations (25), (26), (27), and (28) are verified.

defined byx _

In conclusion, in Case 6, the target is observable if

and only if gozgghrzi%.

Else three ghosts exist and their trajectories are

r.0
defined by y _ 0 and X5 .
XOT(O)

i\/7/>< (ﬂ"— 2|’0)COS2 hr

Table 11: Summarized results of observability in ROTMA

Necessary condition to have ghosts
0
(Observability 1 2 3
case: RDVR-I)
T Vs .4
Case 1 Oy=—— never 6, =— O, #t—
2 2 2
Vs
Case 2 never never 6, = 3 Oy # —
T T
Case 3 6, =— never 6, = — never
2 2
Vs T
Case 4 Oy=—— never never Oy #——
2 2
Case 5 never RDVR-II never Not RDVR-II
Vs Vs
Case 6 6, = 5 never never 6, # 2

The content of Table 11 is consistent with Propositions 14, 15
and 16.

At this point, we can propose the following algorithm to
construct (if existing), all the ghosts from a set of noise-free
measurements {r,, r,, ---, r, }, With r, the range at time ¢, :

1 | 1 |
If rk—Etfh:ronf’ or rk+§tk27x =r,+t r  and

r? > -2r, y,, then the trajectory of the target is observable and
we compute the state vector by minimizing the criterion
K

[r(tk, X)—I’k]z w.rt X.
k=1
If not, we compute one of the vectors X (it is not unique since
the trajectory of the target is not observable) that minimizes
K

§ , then we choose this vector as the state
[r(tk’ X)_rk]2

k=1
vector of the target of interest (of course in reality, this choice
can be wrong); this choice provides us with the corresponding
polynomial function Q(x) and its two roots. Finally, we

compute the other solutions X by exploiting the above
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analysis (we only have to identify in which case we are). Of
course, we are unable at the end to separate the wheat from
the chaff, that is, to identify the state vector of the true target
among the ghost-targets.

4) Examples

In this paragraph, we give one example for each case. In the
following scenarios, the observer has the same trajectory: at the

very beginning, it starts from [0 0]" with an initial velocity of
[0 2] mss. Its
I'=[-0.0416 O] (m/s?). The duration of the scenario is equal
to 6 min (T, =360s). The observer’s trajectory is hence the

acceleration is the constant vector

same as in Section I1l. C. (as shown in Fig. 6).

In the next figures, the trajectories of the observer and target are
shown by thick lines, whereas those of the ghosts are shown by
thin lines. The capital letters (“O” for observer, “T” for target,
and “G” for ghost) designate the moving objects.

a) Example of observable case (case 1)

The target starts at [-4000 O] (m) with a velocity of
[10 2]T (m/s). The observer and the target are on an RDVR-I,

since r(t):ro—%yxtz (Proposition 4 is satisfied). Fig. 8.

depicts the scenario.

collision

£ o
3 / @)
=
5]
S
z ol
T (o}

at

2+

3 . .

-5 -4 3 -2 -1 0 1 2

East (km)

Figure 8. Observable case in ROTMA, RDVR-I.
b) Examples of unobservable cases

The following example corresponds to case 5 with a RDVR-II.
The target starts at [3000 4000]" (m) with a velocity of
[-6 7] (mis).  we readily that

can verify



tan@(t)=—-0.0023t +0.75 thanks to Proposition 5. The

observer and the target are on a rendezvous route of type Il. We
can see in Fig. 9. that one ghost exists, and it is in a rendezvous
route with the observer (see Proposition 16).

collision .
il S

o]

North (km)
o

. . . . . . . . )
-4 -3 -2 -1 0 1 2 3 4 5
East (km)

Figure 9. Unobservable case in ROTMA, RDVR-II.

The next example corresponds to case 2.
The target starts at [4000 O] (m) with a velocity of [25 2]

(m/s). We can check that r(t)+1y t2 = 4000 +15t, but
2 X

(225=)r? < —2r, »,(=1333). Consequently, the observer and

the target are not on a rendezvous route from Proposition 4. The
bearings are constant (their value is 90°), two ghosts exist, as
announced in Table Il (See Fig. 10). Note that if the role of T
and G1 (for example) are inverted (G1 becomes the target and T
becomes a ghost), then this scenario corresponds to case 3:
actually the polynomial function Q(x) is not the same (see eq.

(A6) in the proof of Proposition 14). The bearings of this new
target are not constant, but two ghosts only exist.
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G1

g
g 0 D o/
z (o]
T
2+
45
G2
s
8 . . . . . . . .
-2 0 2 4 6 8 10 12 14

East (km)

Figure 10. Unobservable case in ROTMA, with constant
bearings and no rendezvous route.

The last example offers a scenario for which three ghosts exist.
It corresponds to case 5.
The target starts at [2000 3464]" (m) with a velocity of

[14.6 16.3]T(m/s). The observer and the target are not on a

rendezvous route and the bearings are not constant. Three ghosts
exist (the maximum number of ghosts), as depicted in Fig. 11.

@
T

G1 T

North (km)
o

~ . . . . . . . . . . )
-10 -8 -6 -4 -2 0 2 4 6 8 10 12
East (km)

Figure 11. Unobservable case in ROTMA, general case (ho
rendezvous route and non-constant bearings).

V.CONCLUSION
In the present paper, the results of the observability analysis in
ROTMA started in [13] for a target in constant velocity
motion and an observer moving leg by leg, have been
extended to a smooth observer’s maneuver (constant turn
motion and constant acceleration motion).



When the observer is in CT motion (see for example [1] and
[4] in BOTMA and [14] and [15] in ROTMA), observability is
guaranteed in BOTMA and in ROTMA as well. If a part of the
displacement of the observer is in an arc of a circle, this
conclusion remains valid.

When the observer is in CA motion, observability in BOTMA
is guaranteed if the observer and the target are not in an
RDVR and the bearings are not constant. In ROTMA, if they
are in an RDVR and the bearings are constant, the trajectory
of the target is observable. This proves that even if the
observer kinematic is of an order greater than the kinematic of
the target, observability is not guaranteed. This is not in
contradiction with [5], whose authors established a necessary
(but non-sufficient) observability condition in this case for
BOTMA. When the target is not observable, in ROTMA, the
set of ghost-targets is finite; we give the way to construct them
from noise-free measurements and we end up with three
ghost-targets at most. In BOTMA, the set of ghost-targets is
uncountable. Measurement-based criteria that allow it to be
known whether or not the target is observable are also given.
To summarize, unlike what we established in [13] (the
observer trajectory was composed of several legs), that is, that
the target is bearings-only observable if it is range-only
unobservable and the converse, for the two types of smooth
maneuvers considered here, this duality is not verified. All our
results are summarized in the following Table:

Table I11: Synthetic results about observability

Observer’s kinematics BOTMA ROTMA
CT Yes Yes
CA: RDVD-I No Yes
CA: RDVD-II No No
CA: constant bearings No No
CA: others Yes No

We extended in BOTMA our analysis when the observer’s
trajectory is composed of a CA motion followed by a CV
motion (and inversely): arguing fundamental properties, we
proved that if the bearing rate is non-null, the target is
observable.

Despite the rank equality of the FIMs in ROTMA and
BOTMA (see [13]), the statuses of observability in ROTMA
and in BOTMA are not necessarily the same. Even if this
result is surprising, it is consistent with the theory (see for
example [8]): the existence of a linear form of the BOTMA
problem explains: (i) the equivalence between the regularity of
the FIM and observability and (ii) the unaccountability of the
set of ghost-targets in non-observable situations. Conversely,
in ROTMA, in the case of non-observability, the FIM can be
singular or not and the set of ghost-targets is finite. This is a
proof that the problem of ROTMA cannot be expressed under
a linear form (otherwise the set of ghost-targets would be a
linear subspace and hence uncountable).

Obviously, we do not claim to have achieved a complete study
of observability in ROTMA, for example, the cases when the
observer’s trajectory is composed of a CA motion followed by
a CV motion, or when the motion of the observer is
polynomial of order greater than two, or when the observer
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does not maneuver whereas the target does (which we studied
in BOTMA in [2] and [9]), and so on must be investigated.
Our study can help as a basis.

The next step (and paper) concerning ROTMA is the
estimation, when the measurements are polluted by an additive
noise. The observability analysis presented here will allow us
to anticipate several difficulties: (i) thanks to the given
criteria, we will be able to construct a statistical test to decide
whether the observer and the target are on a rendezvous route
or not. (ii) Moreover, for a given solution, we will construct
the set of ghost-targets in the case of a lack of observability.
(iii) Finally, an initialization of any numerical routine
(necessary to compute the maximum likelihood estimate of the
state vector), based on this analysis, can be proposed.

APPENDIX
A. Proof of Proposition 14

We exploit here the four equations of Lemma 3. In order to
render the proof lighter, we drop the subscript T in a,, b, and

c, defined in (24): a=r?, b=r,v, cos(d,—h,) and
c=V.—r,y,sing,.

From (28), we have x= x,;(0). Reporting this first result into
(27), we get x2.(0)+y® —xy, =c. Then, multiplying both
sides of this equation by yZ, we  get
Y& )+ Y2y —xyrr =oy*. (AL

From (26), we know that y?y? = [b—xx, (0)]°. Inserting this
into (A1), we get

Y25 (0)+(b—xx)* —xy?y, =cy*.  (A2)

Finally, using Eq. (25), we replace y2 by a—x* in (A2), and
we end up with the following equation:
(a— XZ)XST (0)+[b—xxor (0))* - x(a— xz)yX = c(a— x2) - (A3)

The cubic equation (A3) has at most three real roots (one of
them is x_.(0)). Let us denote the three solutions as

X (i =0, 1], 2) (in some cases, only one or two roots exist).

For convenience, the root x, (0) will be denoted X, .

To compute the two other roots, we first develop (A3):
%y, + X[ %2, (0)+ %3, (0)+ ¢] +x[-2b%o; (0)—ay,]+cst=0

o Xy +xc—x[2bx,;(0)+ay, | +cst=0.  (Ad)
Since X, is a root, we have
XXy, +xic—x[20%,;(0)+ay, | +cst=0.  (A5)

The difference (A4) - (A5) is
(XS—XS)}/X+(X2—Xg)C—(X—XO)[ZbXOT(O)—i—a}/X] =0’
or, equivalently,



(x— xo){(x2 + X2+ X xo);/X +(x+x%,)c—[ 2% (0)+ay, ] }: 0.
(A6)
Dividing (AB) by (X=%,): we get
(X2 + X2 + X%, )y, +(x+%)c—[20%; (0)+ay, | =0 (A7),
which is a quadratic equation.

Rearranging the terms of (A7), we end up with
X27/>< +X(X07/X +C)+X§7x +XO C_[2bXOT(O)+a7x ] :O
or equivalently

X

X7, +C
2 4 x 2olx +X%,
7x Vx

Now, we replace the terms a, b, and c by their respective
values. The equation to be solved is hence

2 2
x2+ x4, Y sing, —2r, Yo cos(& —h,)sinh, —r2 =0
7x 7x 7x
2 VZ ]
& XX +r1,—[sing, —2cos (6, —h, )sinh, ]-rZ =0
7x 7x
, VPV
& X+ x—L+1,-sin(g, —2h, )-rZ =0-
7x 7x

QED.
B. Case 5: Compatibility of Egs. (26) and (27)
We start this proof with two useful lemmas.

Lemma L1: cos?(6, —h, )+sin(6, —2h, )sin@, —cos? h, =

Proof:

cos®(6, —h,) = %+%cos(2¢90 ~2h,)

—2h, )sing, = —f[cos(ZHO 2h,)—cos2h, |

—cos’h, = Ll 2h,
2 2

sin(6,

Hence, cos?(6, —h, )+sin(g, —2h, )sing, —cos®h, =0

QED.

Lemma L2: If X, is a root of Q(x), then
ro2 _)(12 =pX+5BS

Proof:

2

Q(x)=x*+ B x+1, BS —r2 With ﬂ:ﬁand
7 x

S =sin(g, —2h, )= sin g, — 2cos(, — h, )sinh,

As X, isaroot of Q(x), we have
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Q(x1)=xf+ﬂx1+r0ﬂ8—r02=0.

Hence, r7 —x’ = fx +1, BS.

QED.

Now, we are able to prove that
yo+ RV cos(6y — )= X%or (0) satisfies (27); that is,
NI

y? =vZcos® h, +y,(x —r,sing,) .

To do this, we compute the difference

2
[ro vy 008(90 — hr )_ XIXOT (O)

or equivalently

—(vf cos® h, + y, X, — 7,1, sin 00)

[r, v, cos(d — . )= X%or )]
(3 ) 005, % 50 <D
ry — X vy cos® h, + 7, % 7Xrosm00)_D
First of all,
[r, v, cos( —h, )= x%or )]
= r2vZcos?(6, —h, )+ x2xZ; (0)

—2%,%o7(0) 1, v, cos(6, —h )
= r2v?cos?(@, —h, )+x2v’sin®h,

—2x, 1, v? cos(6, —h, )sinh,
= r2v2cos’(6, —h )+ xV2sin’h +x 1, v? (S —sing,) (A8)
Now we compute (ro2 - xf)(vr2 cos’ h, +y, X — ¥, sin 90). We
use Lemma L2: 7 —x’ =X +1, BS.

Hence,
(ro2 —-x? )(vf cos? h, +y,% — 7,1, sin 00)
=p(x, +r, S)(vf cos®h, +y,% — Iy, sin 6’0)

= (% + 1, S) A2 cos? h, +v2x, —vZr,sin )

=VIX + X I, V2 S—X, I, vZsin g,
+(x, +1,S)BV2cos?h, —rZvSsiné,
=V2Xx? + X1, V2 (S —sin @, )+v? cos? h,.(x B + r, SB)—r2v’Ssin 6,
(A9)
We end up with D =(A8) — (A9), that is,
D =r2vZcos?(6, —h, )+ x2vZsinh, +x, 1, v? (S —sinég,)
—[v X2 + 1, V2 %, (S —sin @, )+ V2 cos® h, (x, B+ 1, SB)—r2SV? sm@]

=12 v? cos?(6, —h, )+ x2v? (sin? h, —1)
—vZcos?h (xB+r1,SB)+r2v?Ssin 6,

=12 v? cos?(6, —h, ) —vZ cos? h,(XZ + x,B+T1, SB)+
(A10)

r2v’Ssin 6,



But, again from Lemma L2, we have x>+ Bx +1, BS =1, .
We simplify (A10) and we get
D =r2 v’ cos®(6, —h,)—r2v? cos® h, +r2v?Ssiné,

=12V [cos?(@, —h, )—cos? h, +sin(g, —2h, )sin 6, ] -
Using Lemma L1, we conclude that D =0.

QED.
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