Claude Jauffret 
email: jauffret@univ-tln.fr
  
Denis Pillon 
email: denis.pillon@fr.thalesgroup.com
  
Annie-Claude Pignol 
email: pignol@univ-tln.fr
  
Bearings-Only Maneuvering Target Motion Analysis from a Nonmaneuvering Platform

Keywords: Tracking, Bearings-only TMA, Maneuvering target, Observability, Cramèr-Rao Lower Bound

come    

I -Introduction

For the last four decades, the so-called bearings-only target motion analysis has been the subject of constant and intensive interest. If, at the very beginning, this problem was posed in an acoustic context (submarine with the use of passive sonar systems, see [START_REF] Kolb | Bearings-Only Target Motion Estimation[END_REF] for example), it is encountered in the electromagnetic (aircraft surveillance using ESM sensor) and optic domains (satellite using an infrared camera). The "standard" version of BOTMA assumes that the two mobiles are on the same plane and that the target has a constant course and speed (rectilinear movement) during the observation duration. As a consequence, the aim of the classical BOTMA algorithms is to estimate four parameters (two coordinates for geographical position, speed and course of a target) from a set of available bearing measurements collected by the observer.

Under those classical assumptions, it is well known ( [START_REF] Nardone | Observability Criteria for Bearings-Only Target Motion Analysis[END_REF], [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF]) that if it maintains a constant velocity vector, the own ship cannot determine the trajectory of the source. In the relative coordinate system linked to the current position of the observer, the trajectories producing the same bearings are homothetic. As a consequence, in an absolute coordinates system, the family of these trajectories is defined by three parameters ( [START_REF] Lindgren | Properties of Bearings-only Motion Analysis: An interesting case study in system observability[END_REF], [START_REF] Le Cadre | Discrete-time Observability and Estimability Analysis for Bearings-Only Target Motion Analysis[END_REF]): the missing dimension causes the lack of observability. This observability status is the fundamental difference between BOTMA and other TMA problems, such as the TMA based upon measurements of time difference of arrival (TDOA) or measurements of frequency difference of arrival (FDOA). In these latter cases, the source's trajectory is not observable if the source travels on a symmetry axis (for example, in TDOATMA, the source moves along the line defined by the two sensors or along their mid-perpendicular [START_REF] Arnold | Target Parameter Estimation Using Measurements Acquired with a Small Number of Sensors[END_REF]). As soon as the target leaves this axis, the problem becomes observable. In short, the observability is guaranteed most of the time in TDOATMA and FDOATMA while this property is hard to obtain in BOTMA since the observer must maneuver in an efficient fashion: in BOTMA, the quality of the estimation depends highly on the observer's maneuver. Some papers propose interesting solutions to answer the difficult question: how to maneuver to get the best from the collected bearings (see [START_REF] Passerieux | Optimal Observer Manoeuver for Bearings-Only Tracking[END_REF] and [START_REF] Le Cadre | Optimizing the Receiver Maneuvers for Bearings-Only Tracking[END_REF])? On the other hand, there exist a variety of maneuvers which maintain the trajectory of the source unobservable ( [START_REF] Nardone | Observability Criteria for Bearings-Only Target Motion Analysis[END_REF], [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF]).

Any maneuver is costly for the observer which prefers to reach a point in the shortest time, i.e. by traveling along a straight line. Indeed, any zigzag will slow down the own ship. Moreover, maneuvering causes a loss of discretion with regard to another platform (which can be the target itself). For example, when maneuvering, a submarine can emit transient signals while an aircraft changes its infrared signature.

As a consequence, in BOTMA, a non-maneuvering observer which would still be able to estimate without ambiguity the trajectory of a source, would benefit from a precious advantage over many users. The way to achieve that goal is to take prior information into account. Prior information can be extra measurements, for example a given speed drawn in an admissible range (the ship's speed never exceeds 20 m/s, while the aircraft's is greater than 30 m/s) or a given course.

Another way is to take other measurements into account such as the frequency line; this supposes that the source emits pure unknown and constant tones and makes a dedicated processing necessary (see [START_REF] Passerieux | Target Motion Analysis with Bearings and Frequencies Measurements[END_REF], [START_REF] Maranda | Localization of a Manoeuvring Target Using Simulated Annealing[END_REF] and [START_REF] Becker | A general approach to TMA observability from angle and frequency measurements[END_REF]). Frequency measurements have also been exploited for localization problems (i.e. stationary target) without the requirement of constant frequencies [START_REF] Becker | Passive localization of frequency-agile radars from angle and frequency measurements[END_REF].

Bearing measurements collected by another non-maneuvering sensor make the trajectory of the source observable [START_REF] Guelle | Inter-array Multitracks Association[END_REF], but the price to pay is the existence of an efficient communication between the two platforms and a reliable fusion center. This link can be wireless (two submarines which communicate at a low rate) or not (for example, a towed array). In that case, except for some "pathological cases", the observability is guaranteed [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF].

In this paper, we propose to consider a new piece of information when the trajectory of the source is composed of two legs ("segmented" or "piecewise rectilinear" trajectory is also the vocabulary used in the literature): the time of maneuver can be interpreted and used as an extra measurement. An assumption is required: the speed of the target must be equal to a constant.

The segmented trajectory model for the target has been widely employed in papers dealing with the problems of detecting maneuvers (see [START_REF] Holst | On Target Manoeuvres in Bearings-Only Tracking[END_REF], [START_REF] Koteswara Rao | Modified Gain Extended Kalman Filter with Application to Bearings-Only Passive Manoeuvring Traget Tracking[END_REF] and [START_REF] Koteswara Rao | Algorithm for Detection of Manoeuvring Targets in Bearings-Only Passive Target Tracking[END_REF]). Concerning the own ship maneuver, this model has been used in the past in order to propose an approximation of the CRLB [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF], or to optimize the observer's maneuver [START_REF] Le Cadre | Optimizing the Receiver Maneuvers for Bearings-Only Tracking[END_REF], or to improve the optimization algorithms carried out in BOTMA (see for example [START_REF] Pham | Some Quick and Efficient Methods for Bearings-Only Target Motion Analysis[END_REF], [START_REF] Nardone | A Closed-Form Solution to Bearings-Only Target Motion Analysis[END_REF] and [START_REF] Blanc-Benon | Fusion of Reduced-Rank TMA Estimates[END_REF]). This model is justified since in practice, a ship or a submarine prefers to change its heading at a constant speed.

Of course, a more realistic model must incorporate a part with constant turn rate between two legs: this model is widely adopted for the own ship (see [START_REF] Koteswara Rao | Modified Gain Extended Kalman Filter with Application to Bearings-Only Passive Manoeuvring Traget Tracking[END_REF], [START_REF] Sanjeev Arulampalam | Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters[END_REF]) and for the source as well (see [START_REF] Kirubarajan | D Bearings-Only Tracking of Maneuving Targets Using a Batch-Recursive Estimator[END_REF], [START_REF] Sanjeev Arulampalam | Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters[END_REF] and [START_REF] Ristic | Tracking a Manoeuvring Target Using Angle-Only Measurements: Algorithms and Performance[END_REF]). Our proposed algorithm will be applied to some scenarios based on this model. Note that some authors have considered scenarios with a circular motion for the observer (see [START_REF] Farina | Target Tracking with Bearings-Only Measurements[END_REF] and [START_REF] Ristic | Tracking a Manoeuvring Target Using Angle-Only Measurements: Algorithms and Performance[END_REF]).

In all papers dealing with bearings-only maneuvering target motion analysis (BOMTMA), the observer is supposed to maneuver before the source ( [START_REF] Holst | On Target Manoeuvres in Bearings-Only Tracking[END_REF], [START_REF] Koteswara Rao | Modified Gain Extended Kalman Filter with Application to Bearings-Only Passive Manoeuvring Traget Tracking[END_REF], [START_REF] Koteswara Rao | Algorithm for Detection of Manoeuvring Targets in Bearings-Only Passive Target Tracking[END_REF]). Most of them consider recursive solutions. Here, we claim and prove that BOMTMA is feasible for a non-maneuvering own ship under non restrictive conditions. And a batch estimator reached by a numerical routine is also proposed.

The paper consists of four main sections and a conclusion:

Section II is devoted to the presentation of BOMTMA when the source's trajectory is composed of two legs. A criterion of observability is given with its practical consequences.

The maximum likelihood estimator is proposed in section III, the observability condition being satisfied. Some numerical details are given.

Monte-Carlo simulations are also presented together with the ultimate performance given by the CRLB. Robustness to a non abrupt change is illustrated by an example.

Section IV presents an extension of the BOMTMA to the cases of a smooth change of heading. Robustness to a small change in speed is also illustrated.

Section V presents some tactical considerations: the respective performances of BOTMA and BOMTMA made by each mobile against the other are compared.

The conclusion follows.

This paper is the extended version of [START_REF] Jauffret | Bearings-Only TMA Without Observer Maneuver Proceedings of the International Conference on Information Fusion[END_REF].

II -BOMTMA Observability analysis and associated criterion

A. Notations and problem formulation of the

BOMTMA

We consider an observer (or own ship) and a source (or target) moving on the same plane. In this section, the Cartesian coordinates will be used.

The source moves with a constant velocity vector and changes suddenly its course at time to have a new heading up to the end of the scenario. More precisely, its complete motion is composed of two legs: during
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, the source is traveling with the velocity vector and during 
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Hence, the relative motion equation is given by
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with the same convention as previously :

1 = i if M t t ≤ and 2 = i if . M t t >
As usual in BOTMA, the noise-free bearing is then given at time t by
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A typical scenario and the associated notations are given in Fig. 1. 

B. Bearings-equivalent trajectories on each leg

For the sake of clarity, we will need the two following definitions: 
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The parameter is called the homothetic ratio.

λ

For one leg only, it is well known (see [START_REF] Lindgren | Properties of Bearings-only Motion Analysis: An interesting case study in system observability[END_REF], for example) that any homothetic trajectory is bearings-equivalent to the actual one: Indeed, from (3), we get
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is not a constant (which will be assumed subsequently), any bearings-equivalent trajectory is a homothetic trajectory. This (intuitive) statement is not trivial and we propose a proof in the appendix.

( ) t θ

As a consequence, on each leg, the sole trajectories at a constant velocity vector and producing the same data given by (3) are defined, in the relative coordinate system whose origin is the current location of the observer, by their relative positions and velocity vectors denoted and
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The homothetic ratios are strictly positive.

i λ

The corresponding trajectory is then given by (in an absolute coordinate system)
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Using ( 4) for ( 5), we get
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Then, using ( 2) for ( 6), we obtain
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Since the source's position at the maneuver time is unique, i.e , we have the equality
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Fig. 2 illustrates the source's trajectory and a homothetic source's trajectory in the relative coordinate system linked to the observer. 

C. Observability analysis when is known

M t

The question of observability can be reduced to the question concerning the uniqueness of the parameter λ : if another parameter λ such as

( ) ( ) λ λ , S , S 2 1 V V =
(fundamental assumption of constant speed) exists, then the trajectory is not observable, otherwise it will be.

So, let's consider the following difference:

( ) ( ) 2 2 2 1 λ λ ) λ ( v Δ , S , S V V - = (9)
Using ( 8) for ( 9), we get
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which can be written as
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We are interested in cases where

0 = ) λ ( v Δ . If ( ) 0 2 , 1 , ≠ -S S T O V V V , then 0 ) ( = Δ λ v if and only if or 0 = λ 1 = λ . The solution 0 = λ must be discarded (degenerated case). The other solution ( 1 = λ
) is acceptable and corresponds to the actual trajectory. So the condition of observability follows:
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D. Practical consequences

The previous analysis implies some practical consequences:

1) The BOMTMA system is not observable if a)

, i.e. the observer is motionless,

[ ] T O V 0 0 = b) or
, the source does not change its course, which is not our assumption,

2 , 1 , S S V V = c) or ( ) 2 , 1 , S S O V V V - ⊥
. Note that this condition holds whatever the initial positions of the two mobiles.

2) The "special symmetric geometry" of the scenario proposed in [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF] (see Fig. 3)

satisfies the last condition ( ) 2 , 1 , S S O V V V - ⊥
: when the role of target and ownship are inverted, such a scenario allows one to perform an efficient BOTMA of our observer, while our observer cannot estimate the source's trajectory! Fig. 3 : The "special symmetric geometry" (copy from [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF] page 780)

3) In practice, a maneuver detection informs us about the existence of the maneuver between and . Nevertheless, the two-leg trajectory of the source

1 t F t
can still be unobservable, see for example, the "special symmetric geometry" of the Fig. 3.

4)

If the trajectory of the source is composed of several legs, the BOMTMA observability is guaranteed if two consecutive velocity vectors satisfy the criterion [START_REF] Arnold | Target Parameter Estimation Using Measurements Acquired with a Small Number of Sensors[END_REF].

5) This conclusion is not in contradiction with previous analyses presented in [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF] and [START_REF] Payne | Observability conditions for angle-only tracking[END_REF], for example. Indeed, in those papers, the trajectory of the source is defined by a polynomial model, which is not the case here.

E. Observability analysis when is unknown

M t

We are going to prove ab absurdo that is observable. If is not observable, then there exists another instant, say (arbitrary 
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] N t , t 0 [ F N t , t F M t , t N t During [ then [
, the two trajectories are homothetic. More precisely, the two homothetic velocity vectors of the ghost source are homothetic to the same one. In mathematical words,

N M t , t F N t , t
during , the actual source has a constant relative velocity vector :

[ F M t , t 2 , R V during then [
, the ghost source has two constant velocity vectors, homothetic to the actual source's velocity vector : and , linked to by
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, the position of the ghost source is unique, so

N t λ ' ' λ ' λ = =
. We deduce that . Hence the ghost source does not maneuver at , which is in contradiction to our assumption. Hence, is observable.

'' , R ' , R V V 2 2 = N t M t
Note that in this proof, the condition of observability ( 10) is not used. As a consequence, can be estimated even though the whole trajectory is not observable.

M t

III -Performance and robustness of the

BOMTMA

We are going to construct an estimator under the observability condition (10):

( ) 0 2 , 1 , ≠ -S S T O V V V .
The observer collects the measured bearings at time :

k t ( ) k k k ε t θ β + = , for K , , k L 1 =
where k ε is the additive noise corrupting the data. As usual, the random vector is assumed to be Gaussian. It is zero-mean and its covariance matrix is equal to 

[ T K ε ε L 1 ] ( )

A. known

M t

So far, the two-leg trajectory of the source is defined by three 2D vectors:

and . Because ( ) ( ) ( ) [ ] 1 , S T M S M S M S V , t y t x t P = 2 , S V S , S , S v V V = = 2 1
, any five component vector
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] can be helped as state vector ( is the source's heading during leg #i ). For convenience, we have chosen the state vector at time denoted
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Considering that the noise-free bearings ( ) k t θ are a function of and of , the noise-free measurement equation is given by
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Note that with the choice of ( n Z M n ≠ ) as state vector, the mathematical expression of is more complicated.

( M n k t , Z θ ) 1)

Cramèr-Rao lower bound

The CRLB being equal to the inverse of the Fisher Information Matrix (FIM, see [START_REF]Van Trees Detection, Estimation, and Modulation Theory[END_REF] [29]), we compute the latter as follows

( ) ( ) ( ) M M k T Z K k M M k Z k M t , Z θ t , Z θ σ Z F M M ∇ ∇ = ∑ =1 2 1
where is the gradient operator. Then
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We can easily compute from
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where is the Jacobian of the transformation , defined by 
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2) Maximum likelihood function and algorithm aspects

The maximum likelihood estimator (MLE) being equivalent to the least squared estimator if the additive noise is Gaussian and temporally uncorrelated, we have to minimize the following quadratic criterion

( ) [ ] ∑ = - = K k M M k k k M M t , Z θ β σ ) t , Z ( C 1 2 2 1 .
We have employed the classic Newton-Raphson scheme, switching during iterations with the Levenberg-Marquardt algorithm (LMA) when necessary (for example, when the Hessian is not numerically positive definite, see [START_REF] Dennis | A User's Guide to Nonlinear Optimization Algorithms Proceedings of IEEE[END_REF]). The initialization point is chosen The returned vector is denoted 

( ) ( ) [ ] T , S , S S M S M S M h , h , v , t y , t x Ẑ ˆ0 2 0 1 0 0 0 0 = ( ) ( ) ( ) ( ) ⎪ 
( ) ( ) [ ]

3) Results

For Monte-Carlo simulations, the chosen scenario is defined as follows: The observer starts from the origin; its speed is 5 m/s and its heading is 90°.

Meanwhile, the source which has a speed of 4 m/s begins its trajectory at with the initial heading of 90°. At time The standard deviation of the measurement noise is equal to 1°. We run 500 Monte Carlo simulations.

The statistical analysis of the 500 estimates are summarized in Table 1 and illustrated in Fig. 4 where the initial positions of the source (respectively the observer) is indicated by the letter "S" (respectively the letter "O"). The given statistics concern the final position of the target. The 90% confidence ellipse (corresponding to the CRLB) is plotted together with the 500 position estimates.

We note that the biases are negligible and the standard deviation of each component is close to the corresponding element of the CRLB. Obviously, the estimator performs correctly: The relative accuracy of the estimated range is 

1) CRLB

The Fisher information matrix w.r.t. the "extended state vector" ( is not defined, since the log-likelihood function depends on

) M M t , Z ⎥ ⎥ ⎤ ⎢ ⎢ ⎡ t Δ t M (ceiling function of t Δ t M ) and is not differentiable w.r.t. : M t ( ) ( ) [ ] ( ) [ ] ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ - - - - × = ∑ ∑ + = = 2 1 2 , 2 2 1 1 , 2 1 , 1 2 1 , 1 2 1 exp Cste , , , Ln K M k M M k k k M k M M k k k K M M t Z θ β σ t Z θ β σ β β t Z L L
Consequently, the computation of the gradient of the log-likelihood function is hopeless. We have implicitly assumed that is a multiple of .

M t t Δ

The Cramèr-Rao Lower Bound previously computed is here optimistic, since M is unknown and information will be shared for its estimation. However, it keeps helping as a lower bound.

2) Algorithm aspect

The following procedure is applied: for each

{ } 2 3 - ∈ K , , M L , M Z ˆ minimizes . Then we retain ) t , Z ( C M M M Ẑ
ˆ (and the associated M ˆ) , for which

( ) M M ˆt , Z Ĉ is the least.
Remark: a test of maneuver detection (for example the one proposed in [START_REF] Holst | On Target Manoeuvres in Bearings-Only Tracking[END_REF] or [START_REF] Blanc-Benon | Trajectographie Passive en Présence d'Erreur de Modèle: Utilisation des Résidus[END_REF]) can be applied on the bearings, yielding a coarse estimate M ~ of M . Then, 

a

3) Results

The Newton-Raphson (again switching with the LMA) algorithm has been initialized as previously for each M .

The statistical analysis of 500 Monte Carlo simulation runs is presented in Table 2 and illustrated in Fig. 5. In Table 2, the results about the state vector estimator and those about the time estimator are separated by three lines.

M t

The bias and the standard deviations are a little bit greater than in the previous case (see table 1). We note that the maneuver time is correctly estimated. The relative accuracy of the estimated range is

% ρ σ ˆρ 4 =
at the final time while its relative mean-square error is equal to 4.07%. 

C. Robustness of the BOMTMA to a non abrupt change

In practice, the source does not change its heading instantaneously. This is why, it is highly important to check how robust the BOMTMA algorithm is when this assumption is violated. A new scenario has been considered: from now, the source has a constant turn rate between its two legs at constant speed.

More precisely, its trajectory is composed of A first leg between [ )

1 1 M t , t
Then, a arc of a circle during [ ) 

2 1 M M t ,

IV -Extension of the BOMTMA algorithm to a non abrupt change of heading

In the previous section (III C), we have used the leg-by-leg trajectory model. In this section, we are going to consider the correct trajectory model, taking into account the actual geometry of the source's trajectory: the source keeps a constant speed, but its trajectory is composed sequentially of a first leg at constant velocity vector, followed by a turn at constant turn rate and a second leg. The case where the beginning and the end of that turn are known will be considered; then the case where they are unknown will be studied.

A. and known. 
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For (constant turn) :
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For (first leg) :
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The expression of and the computation of the FIM w.r.t.

follow. We did not analyze the observability; however, the FIM is numerically regular for the simulated scenario. This guarantees local observability for this scenario [START_REF] Jauffret | Observability and Fisher Information Matrix in Nonlinear Regression[END_REF].

(

2 1 M M K k t , t , Z θ ) K Z The quadratic criterion to minimize is ( ) [ ] 2 1 2 1 2 2 1 1 ∑ = - = K k M M K k k k M M K t , t , Z θ β σ ) t , t , Z ( C .
Again, 500 Monte Carlo simulations were made. Their statistical properties are given in Table 4 and the set of estimated positions are displayed in Fig. 7. The relative accuracy of the estimated range is % 83 . 4 ˆ= ρ σ ρ and its relative meansquare error is equal to 5.02%. 

) t , t , Z ( C M M K 2 1 K Z 1 M t 2 M t 1 M and 2 
M in the search set { } 2 3 - K , ,L (and ), 
we minimize . Again, we retain

2 1 M M < ) t , t , Z ( C M M K 2 1 1 M ˆ and 2 M ˆ
(and the associated K Z ˆ) , for which the criterion is the least. The initialization is given by the output of the BOMTMA procedure, i.e K Z ˆ as described in section III B.

The statistics of the 500 Monte Carlo simulation runs are presented in Table 5 and illustrated in Fig. 8. The biases are of the same order as those presented in Table 4, except for the biases of the second heading which are surprisingly smaller. The standard deviations are close.

The relative accuracy of the estimated range is % 48 . 5 ˆ= ρ σ ρ and its relative mean-square error is equal to 5.56%. From theses simulations, it seems that the lack of knowledge of and is not a handicap. 

( ) ( ) [ ] T , S , S , S S K S K S K h , h , v , v , t y , t x Z 2 1 2 = ′ 1 M 2 M t
The algorithm presented in IV B is then applied to 500 simulated Monte Carlo runs.

The results are summarized in Table 6 and illustrated in Fig. 9. The relative accuracy of the estimated range is % . ρ σ ˆρ 81 4 =

. Its relative mean-square error is equal to 7.47%. We observe a degradation of the performance which can be evaluated by the bias and the standard deviation of each component of

K Z ˆ.
Again, the estimator can be used advantageously in a real situation. 

V -Tactical aspect

Let two mobiles be denoted by A and B. Mobile A moves at a constant velocity vector while mobile B moves on a leg at a constant velocity vector, then changes suddenly its heading but keeps its speed (in Section II A, A was the observer and B the source).

Each of them shall try to localize the other: mobile A by the BOMTMA and mobile B by conventional BOTMA.

We compare the accuracy of the respective estimated range, when the initial range (of the same scenario as that given in section III A 2) varies from 6 km to 40 km. This range accuracy is evaluated with the CRLB, the standard deviation of the measurements being equal to 1° for each platform. The values are illustrated in Fig. 10. As expected, conventional BOTMA has advantages over BOMTMA; but mobile B must have maneuvered to realize a performing TMA, which implies a loss of discretion and other disadvantages from a tactical point of view.

We must emphasize the fact that, as noticed in paragraph II E, a maneuver corresponding to the "special symmetric geometry" will guarantee the supremacy of TMA of B on A, whatever the initial azimuth. An open question is then: does there exist a scenario with special geometry for which the BOMTMA overtakes the conventional BOTMA?

VI -Conclusion

Two new bearings-only tracking methods have been proposed in this paper: neither requires a maneuver of the own ship provided the source's speed does not change during the scenario and its trajectory is composed of two legs. The maneuver times need not to be known. The basic assumptions are:

-For the first method, the change of headings is instantaneous: in that case, it has been proven that the source's trajectory is observable if the bearing rate is not equal to zero and the difference of the two velocity vectors is not orthogonal to the velocity vector of the observer.

-For the second one, the two legs are separated by a turn at constant rate.

The observability has not been rigorously established; in the cases treated, we have used the non-singularity of the Fisher information matrix as local observability criterion.

In both cases, a batch estimator has been proven to perform properly, in agreement with the Cramèr-Rao lower bound. Table 7 shows that the performance is excellent since the relative mean square error on the final range (~9 km) is less than 5.6 %.

When the assumptions are violated, i.e. the speed of the target is not the same on each leg, the results are still acceptable with a relative mean square error on the final range less than 7.5 %. In the future, recursive algorithms could be applied to the same type of scenario.

For a same family of scenario, the performance analysis via the CRLB reveals the superiority of the BOTMA over the BOMTMA. This analysis must be extended to a large number of cases, before a definitive conclusion can be reached.

More generally, the observability analysis poses new tactical problems which merit a deeper analysis. 
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where is a reference time.

* t

The polar coordinates of the relative position vector and of the relative velocity vector are

( ) ( ) ( ) T t t θ ρ ,
and (

, respectively. The correspondence between Cartesian and polar coordinates is
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2) in (A.1), then, the noise-free measurement is given by The set of solutions is hence We, hence, have to solve the system
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Fig. 1 :

 1 Fig. 1: Example of observer's and source's trajectories in an absolute

Fig. 2 :

 2 Fig. 2 : Example of source's trajectory in the relative coordinates system linked to the observer.

  and a (ghost) source whose trajectory is composed of two legs : one during [ and one during . In other words, the bearings collected during [ are generated by a non-maneuvering target (the true one) and also generated by a maneuvering target (at time).

  Here we have arbitrarily chosen the range (at) M t m ρ M 2000 =, which is far from the true one. The routine stops as soon as the last five iterations provide five quasi identical vectors (their relative distance is less than 1%) or the maximum number of iterations is reached (this number has been fixed to 20, in our program).

(

  it suddenly changes its course and its new heading is equal to 240°. The total duration of the scenario is 30 min. corresponding to a number of measurements equal to 450

)

  at the final time; its relative mean-square error is equal to the same value.Note the empirical standard deviation of the final range is defined by , where is the estimate of at the i-th run and i ρ ˆρ ρ is the empirical mean of the 's, while its relative mean-square error is defined by i

Fig. 5 :

 5 Fig. 5: Results of the Monte-Carlo runs ( unknown) M t

Fig. 6 :

 6 Fig. 6: Results of the Monte-Carlo runs with the leg-by-leg model

Fig. 8 :.

 8 Fig. 8: Results of the Monte-Carlo runs ( and unknown) with the

Fig. 9 :

 9 Fig. 9: Results of the Monte-Carlo runs ( and unknown) with a

Fig. 10 :

 10 Fig. 10: relative accuracy of the range for each platform.

  satisfies another one, for example 0 2 = z . In short, the 3-dimensional state vector Y is not observable when is constant.In this case, there does not exist an open subset of [ ] Note that because the bearing is not a constant, the contra poses of (A6) and (A7) stand:

  

Table 1 : performance at the final time ( known).

 1 

	t	K	t	M

S O Fig. 4: Results of the Monte-Carlo runs ( known) M t M Z

  smaller search interval [

	M	Min M ,	Max	]	centered on	M ~ can be used for the
	algorithm.					

Table 2 : performance at the final time ( unknown).

 2 

	t	K	t	M

Table 3 : performance at the final time (non abrupt change of heading)

 3 t The other parameters are unchanged.Again, we have had recourse to 500 Monte Carlo simulations and we have used the BOMTMA algorithm of section III B. The results concerning this population are given in Table3and illustrated in Fig.6. global performance is degraded especially concerning the estimates of the headings which are now biased. The relative accuracy of the estimated range is

	And finally a second leg during [ t 2 M	,	t	K	]

Table 4 : performance at the final time ( and known).

 4 

	t	K	t	M	1	t	M	2

Results of the Monte-Carlo runs with the correct model B. and unknown.

  

	t	M	1	t	M	2
	The minimization of	w.r.t.	,	and	follows the same
	scheme : for each		

Table 5 : performance at the final time

 5 

	t	M	1

Table 6 : performance at the final time K

 6 

	t

Table 7 : Synthetic results about the relative range accuracy at the final time Algorithms Assumptions

 7 

					Relative
			Relative range
					mean-square
			accuracy	ρ σ ρ .	error on the
					range
		M t known	3.3 %		3.3 %
	BOMTMA	M t unknown	4. %		4.07 %
		Non abrupt change		
			6.45 %	7.17 %
		of heading		

.

  The question is then to know if the vector Y is observable.If the answer is yes, the system is observable; otherwise it is not.Two situations can be met: the first one for which ( ) t θ is a constant and the second one when is not. We are going to analyze these two situations.

	The question of the observability can be reformulated by
	tan	-1	⎢ ⎣ ⎡	cos sin	y y 1 1	+ +	( ( t t	--	t t	* *	) )	y y	2 2	cos sin	y y 3 3	⎥ ⎦ ⎤	=	tan	-1	⎢ ⎣ ⎡	cos sin	z z 1 1	+ +	( ( t t	--	t t	* *	) ) z z	2 2	z z 3 3 cos sin	⎥ ⎦ ⎤	t ∀	⇒	{	Z	=	Y	} ?
																																							(A. 5)
																				θ	( ) t										
	I -	θ	( ) t	is constant														
	This case is equivalent to ( ) t θ &	=	0	∀	t	∈	[ ] F t , t 1	). We exploit this derivative :
																θ &	( ) t	=		0		∀	t		∈	[ ] F t , t 1	⇔	dt d	tan	θ	( ) t	=	0	∀	t	∈	[ ] F t , t 1
	t Using (A.4), we obtain θ tan		1				ρ ρ	* * t t	θ θ cos sin	t t	* *	t t	t t	* *	v v	h h cos sin
					y	2	sin	y	3	[ cos		y 1	+	tan ( t -	1 t		*	* y cos t θ 2 sin ) y	3	]	t -	y	* cos t 2	* [ t v ρ y sin sin y 1 3	h +	( t	-	t	*	)	y	(A.3) y sin 2	3	]	=	0	t ∀
	simplified into																				θ cos y	t 2	* sin	(	y	t 3	-	t y 1	)	=	0	cos t ∀
	In (A.3) the bearings are completely described by the 3-dimensional vector
	Y	=	θ ⎢ ⎣ ⎡	( ) * t		( ) R * t v ρ				h	R	⎥ ⎦ ⎤	T			=		[	y 1	y	2	y	3	] T
	Let		Z	=	(	z 1			z	2			z	3	)	T		be another state vector, such that
																		θ	( ) t		=		tan	-1	⎢ ⎣ ⎡	cos sin	z z 1 1	+ +	( ( t t	--	t t	* *	) ) z z	2 2	cos sin	z z 3 3	⎥ ⎦ ⎤	t ∀	(A.4)
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Appendix

For all the time t (except for one, at most), the bearing is given by (see [START_REF] Lindgren | Properties of Bearings-only Motion Analysis: An interesting case study in system observability[END_REF] From (A8), we deduce (the solution

is not physically acceptable, since both define the line of sight). As a consequence, (A9) becomes

From (A10), we get or

, since neither nor are allowed to be zeroed (otherwise would be a constant). 

There are two possibilities only:

which is incompatible with our assumption ( ( )

As a consequence, the case

Case 2:

The solution incompatible with our assumption ( is not constant).

( )

Hence the sole solution is .

All the components of Y and Z have been proved equal. As a consequence, the answer to question (A5) is yes: The 3-dimensional state vector Y is observable when is not constant.

( ) t θ

Summary :

If the bearing rate is not equal to zero, then the set of trajectories providing the same noise-free bearings as those originating from the source, are homothetic to the source's trajectory, both w.r.t. the observer's trajectory.

More precisely, they are defined by and

where the homothetic ratio is strictly positive.