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Abstract

Acoustic propagation delay has not been investigated for a continuous wave multistatic sonar

tracking system except for the recent study conducted by Jauffret et al. [6], which estimates the

trajectory of a constant velocity target. The results showed that the estimate bias caused by the

propagation delay is not negligible, especially for a bistatic system. This paper develops an interacting

multiple model unscented Gauss-Helmert filter with numerical Jacobian (IMM-UGHF-NJ) to track

a maneuvering target with propagation delay using a bistatic sonar system. The IMM-UGHF-NJ

can overcome the two tracking challenges introduced by the delay, namely, implicit state transition

model and lack of analytical expression of the Doppler shifted frequency in the measurement model.

Simulation tests have been conducted, and the results show that the IMM-UGHF-NJ can reduce the

estimation error significantly, especially for long range or fast moving targets.
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Maneuvering Target Tracking Using

Continuous Wave Bistatic Sonar with

Propagation Delay

I. INTRODUCTION

Continuous active sonar (CAS), also known as high duty cycle (HDC) sonar, with multistatic setup

has attracted the research interest recently. In such a system, the signal is transmitted almost in a full

duty cycle. Compared to the commonly used pulse active sonar (PAS) system, which transmits only

a short pulse in a cycle, the CAS system has continuous detection capability, and is less disturbing

to underwater fauna through using a low intensity signal.

There are two main types of CAS systems according to the signal waveforms transmitted, namely,

frequency modulated (FM) waveforms and continuous constant frequency waveforms (CW). The FM-

CAS can provide good target bistatic range information, whereas the CW-CAS has good Doppler

shifted frequency measurement (linked to target range rate). The FM-CAS needs to separate indirect

path signal from strong direct path signal via methods, such as m-sequence modulation [3] and

Dopplergram [10]. The FM-CAS has a frequency bandwidth limitation issue in multistatic system, as

broadband waveforms are transmitted repeatedly [5]. The CW-CAS transmits a single fixed frequency

waveform, so that it has no frequency bandwidth limitation problem as the FM-CAS. However, due

to lack of range information, the observability of a target trajectory in CW-CAS is not as good as

FM-CAS, especially for bistatic (a single transmitter-receiver pair) system.

We focus on target tracking using CW-CAS in this paper. A few approaches on this problem have

been proposed in literature before. A Gaussian mixture probability hypothesis density (GMPHD) filter

was developed in [5]. It tracks multiple constant velocity (CV) targets using bearings and Doppler

frequencies detected by multistatic CW-CAS. Results show that CV targets can be tracked using more

than two transmitter-receiver pairs when target range is not available. This research does not take

signal propagation delay into consideration. The effect of propagation delay of CW-CAS has been

studied in [6] recently. An exact Doppler frequency model with propagation delay was proposed.

and a maximum likelihood (ML) estimator based on this model was developed to perform batch

estimation for a CV target. The simulation results showed that the estimation bias induced by the

propagation delay is not negligible, especially for a bistatic system.

In this paper, the propagation delay problem raised in [6] is studied further. We extend the target

CV trajectory estimation using a batch parameter estimation technique to the dynamic recursive
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estimation, which can handle not only CV motion but also maneuvering motion. This extension faces

two challenges. Firstly, the “target time” tk and target position (xk,yk) in the state [defined later in (1)

and (2)] are highly correlated after propagation delay is introduced. This leads to a state transition

equation in an implicit form instead of the commonly used explicit form in [11][12]. Secondly, the

Doppler shifted frequency (one of the measurements) does not have an analytical expression in terms

of the target state. This is because the Doppler frequency is a function of the bistatic range rate

which cannot be described analytically after propagation delay is introduced. Details will be given

later in Section II-B. The two challenges mentioned above were overcome in [6] through solving a

2nd order polynomial equation for CV target. However, the approach in [6] cannot be applied to a

maneuvering target with coordinated turn (CT) motion, and the new approach in this paper will be

shown to handle this.

A dynamic estimation problem uses two basic models, namely, the state transition model and the

measurement model. The state transition model describes the evolution of the target state with time,

and it is (in most cases) an explicit expression of the state at the current time in terms of the state at

the previous time. The measurement model relates the measurement to the state. The two challenges

of the dynamic estimation problem considered in this paper are: (i) the implicit state transition model;

(ii) the lack of an analytical measurement model. These make this problem impossible to solve using

existing filters.

We will develop an interacting multiple model unscented Gauss-Helmert filter with numerical

Jacobian (IMM-UGHF-NJ) to cope with the challenges mentioned above. The IMM [2] is a well

known hybrid algorithm to handle motion model uncertainty in maneuvering target tracking. The

UGHF [11][12][14][15] is a recently developed algorithm for bearings-only tracking (BOT) with

implicit state transition model introduced by the acoustic propagation delay. It can be applied to our

problem. For the measurement model without analytical form, the NJ (numerical Jacobian) algorithm,

which computes the Jacobian numerically, can be utilized [8][13][9]. The Doppler shifted frequency

is a function of the bistatic range rate, ṙ, which has no analytical form due to the unknown time

delay. We can compute ṙ (derivative of range r) using the NJ.

The structure of the rest of paper is as follows. Section II formulates the problem. Section III

presents the IMM-UGHF-NJ. Simulation results and conclusions are in Sections IV and V, respec-

tively.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. At dynamic estimation cycle k, the transmitter emits a CW

signal with constant frequency fT at time tTk , and the receiver receives the Doppler shifted frequency

fR at time tRk via the target reflection at time tk. We assume the transmitter and receiver are stationary
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and located at (xT,yT) and (xR,yR), respectively. The target is moving and its location is [x(tk),y(tk)]

at reflection time tk. The ranges between the target at tk to the transmitter and the receiver are rTk

and rRk , respectively.

Fig. 1. Signal transmission of CW bistatic sonar.

The target states to be estimated for the CV and CT models at time tk are

xCV(tk) = [x(tk) y(tk) ẋ(tk) ẏ(tk) tk]′ (1)

xCT(tk) = [x(tk) y(tk) ẋ(tk) ẏ(tk) ω(tk) tk]′ (2)

where x, y, ẋ and ẏ are the target positions and velocities in the x and y coordinates, respectively, ω

is the target turn rate, and tk is the target time (or reflection time) corresponding to the emission time

tTk and the reception time tRk of the transmitter and receiver, respectively. The measurement vector at

time tRk is

z(tRk ) = [b(tRk ) fR(tRk )]′ (3)

where b is the target bearing from the receiver at time tRk to the target at time tk, measured clockwise

from True North, and fR is the Doppler shifted frequency at the receiver.

A. State transition models

The state transition model describes the evolution of the target state with time. For a generic discrete

problem, it is an explicit form given by

x(tk) = f [x(tk−1)] + Γv(tk−1) (4)

where k is the discrete estimation cycle index, v(tk−1) is the process noise, and Γ is the process

noise gain. However, there is no explicit state transition model for our problem. It can be seen from
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Fig. 2. Time sequences of continuous wave bistatic sonar.

Fig. 2 that the target time, tk, is unknown due to the unknown propagation delay τR. There is an

implicit constraint between the known tRk and unknown tk given by

tk = tRk − τRk (5)

where

τRk =

√
[x(tk)− xR]2 + [y(tk)− yR]2

cp
(6)

and cp is the signal propagation speed in the medium. It can be seen that tk is on the both sides

of the constraint equation (5), since x(tk) and y(tk) are functions of tk. It is difficult to obtain an

explicit express of tk. This leads to use a Gauss-Helmert (GH) state transition model, which describes

an implicit constraint systemically [11][12]. The GH model is given by

g[x(tk),x(tk−1)] + Γv(tk−1) = 0 (7)

The GH models for the CV motion1 and CT motion are given next.

1) Constant velocity Gauss-Helmert model

The GH model for CV motion is given by

gCV
[
xCV(tk),xCV(tk−1)

]
+ ΓCVvCV(tk−1) = 05 (8)

where gCV[·] is the implicit GH state transition function, which combines the CV motion constraints

and the delay constraint between x(tk) and x(tk−1). It is given by

gCV(·) =
[
gCV
1 (·) gCV

2 (·) gCV
3 (·) gCV

4 (·) gCV
5 (·)

]′
(9)

1Although an explicit state transition model for the CV motion can be obtained through solving a 2nd order polynomial
equation [6], the GH model is a systematical way which is suitable for both CV and CT motions.
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where

gCV
1 (·) = x(tk)− [x(tk−1) + ẋ(tk−1)∆k] (10)

gCV
2 (·) = y(tk)− [y(tk−1) + ẏ(tk−1)∆k] (11)

gCV
3 (·) = ẋ(tk)− ẋ(tk−1) (12)

gCV
4 (·) = ẏ(tk)− ẏ(tk−1) (13)

gCV
5 (·) = tk − (tRk − τRk ) (14)

with τRk given in (6) and

∆k = tk − tk−1 (15)

Based on the discrete white noise acceleration (WNA) model [2], the gain matrix ΓCV and the zero-

mean white Gaussian process noise vCV in (8) compensate for small accelerations and the uncertainty

of the sound speed. The noise gain matrix ΓCV is given by

ΓCV =



1
2(∆k)2 0 0

0 1
2(∆k)2 0

∆k 0 0

0 ∆k 0

0 0 1


(16)

The covariance of vCV is

qCV = diag(σ2ẍ σ2ÿ σ2t ) (17)

where σ2ẍ and σ2ÿ are the variances on small target accelerations in the x and y coordinates respectively,

and σ2t is the process noise variance on the target time. The covariance of the error in the model (8)

is given by

QCV(∆k) = ΓCVqCV(ΓCV)′ (18)

2) Coordinated Turn Gauss-Helmert model

The GH state transition model for the CT motion is given by

gCT[xCT(tk),xCT(tk−1)] + ΓCTvCT(tk−1) = 06 (19)

where

gCT(·) =
[
gCT
1 (·) gCT

2 (·) gCT
3 (·) gCT

4 (·) gCT
5 (·) gCT

6 (·)
]′

(20)
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with

gCT
1 (·) = x(tk)−

[
x(tk−1) +

sin[ω(tk−1)∆k]

ω(tk−1)
ẋ(tk−1)

−1− cos[ω(tk−1)∆k]

ω(tk−1)
ẏ(tk−1)

]
(21)

gCT
2 (·) = y(tk)−

[
y(tk−1) +

sin[ω(tk−1)∆k]

ω(tk−1)
ẏ(tk−1)

+
1− cos[ω(tk−1)∆k]

ω(tk−1)
ẋ(tk−1)

]
(22)

gCT
3 (·) = ẋ(tk)− {cos[ω(tk−1)∆k]ẋ(tk−1)

− sin[ω(tk−1)∆k]ẏ(tk−1)} (23)

gCT
4 (·) = ẏ(tk)− {sin[ω(tk−1)∆k]ẋ(tk−1)

+ cos[ω(tk−1)∆k]ẏ(tk−1)} (24)

gCT
5 (·) = ω(tk)− ω(tk−1) (25)

gCT
6 (·) = tk − (tRk − τRk ) (26)

The noise gain matrix ΓCT is given by

ΓCT =



1
2(∆k)2 0 0 0

0 1
2(∆k)2 0 0

∆k 0 0 0

0 ∆k 0 0

0 0 ∆k 0

0 0 0 1


(27)

qCT = diag(σ2ẍ σ2ÿ σ2ω σ2t ) (28)

where σ2ω is the variance of the Gaussian process noises of ω. The covariance of the error in (19) for

the (nearly) CT motion, QCT(∆k), is computed by

QCT(∆k) = ΓCTqCT(ΓCT)′ (29)

B. Measurement model

The measurement model relates the state at time tk to the measurement at time tRk , which is given

by

z(tRk ) = h[x(tk)] + w(tRk ) (30)
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where w(tRk ) is the measurement noise, and

h(·) = [h1(·) h2(·)]′ (31)

with

h1(·) = b(tRk ) = tan−1
[
x(tk)− xR

y(tk)− yR

]
(32)

h2(·) = fR(tRk ) = fT(tTk )

[
1− ṙ(tRk )

cP

]
(33)

The challenge is how to obtain ṙ(tRk ) in (33). We know

r(tRk ) = rTk + rRk

=
√

[x(tk)− xT]2 + [y(tk)− yT]2

+
√

[x(tk)− xR]2 + [y(tk)− yR]2 (34)

and

ṙ(tRk ) =
d[r(tRk )]

d(tRk )

=
ẋ(tk)[x(tk)− xT] + ẏ(tk)[y(tk)− yT]

rTk

dtk
d(tRk )

+
ẋ(tk)[x(tk)− xR] + ẏ(tk)[y(tk)− yR]

rRk

dtk
d(tRk )

(35)

When the signal propagation delay is negligible (for example, for a radar signal), one has tk = tRk

and
dtk
d(tRk )

= 1 (36)

The analytical form of ṙ(tRk ) is then

ṙ(tRk ) =
ẋ(tk)[x(tk)− xT] + ẏ(tk)[y(tk)− yT]

rTk

+
ẋ(tk)[x(tk)− xR] + ẏ(tk)[y(tk)− yR]

rRk
(37)

However, the acoustic signal in our problem has significant propagation delay and tk 6= tRk . The

analytical function

tk = f(tRk ) (38)

December 20, 2016 DRAFT



JAIF 8

is impossible to obtain for a target in CT motion. This causes a major challenge for mapping the

state to the measurement. An appropriate filter to cope with this challenge will be developed next.

III. INTERACTING MULTIPLE MODEL UNSCENTED GAUSS-HELMERT FILTER WITH NUMERICAL

JACOBIAN

The IMM estimator [2] is the most commonly used hybrid approach to handle model uncertainty in

target tracking. This section describes an IMM-UGHF-NJ filter with the implicit CV and CT models

described in Section II and lack of analytical expression for the measurement function.

Similarly to the original IMM estimator, the IMM-UGHF-NJ performs the state estimation in four

steps: mixing, mode-matched filtering, mode probabilities updating and final state combination:

1) In the mixing step, the m hypotheses (where m is the number of models in the filter) at time

k-1 expand to m2 hypotheses using the mixing probabilities based on the mode Markov chain,

which is governed by the m×m mode probability transition matrix Π consisting of the mode

transition probabilities, pij . The m2 hypotheses are then merged into m hypotheses based on

the mixture equations [2].

2) In the mode-matched filtering step, the mixed state estimates are updated by UGHF-NJs (given

later) in parallel.

3) The mixing probabilities are obtained, and the updated mode probabilities are computed based

on the innovations in the mode-matched UGHF-NJs. The updated mode probabilities together

with the mode-conditioned estimated states and covariances are brought to the next step.

4) The final state estimate and its covariance for the current time cycle are computed based on

the mixture equations using the latest mode probabilities in the combination step.

Since the states in the CV and CT models described in Section II have different dimensions, the

unbiased mixing approach [16] is applied in the IMM filter to increase the CV state from 5 to 6.

Before the mixing step, the CV state estimate and its error covariance are augmented with the turn

rate information from the CT model.

The IMM-UGHF-NJ differs from the standard IMM in the mode-matched filters, which are UGHF-

NJ. The UGHF-NJ handles the implicit GH state transition model and evaluates fR(tRk ) in the

measurement vector (3) numerically. The UGHF-NJ prediction, state-to-measurement mapping and

update steps are given in Algorithms 1–3, respectively. In these algorithms, the model superscripts

“CV” and “CT” for the states and GH functions are omitted for simplicity.

Algorithm 1 predicts the state x̂(t̂k−1) from time t̂k−1 to an unknown target time, tk, corre-

sponding to the signal reception time tRk . The relationship between tk and tRk is given by the implicit

constraint (5). An unscented Gauss-Helmert approach is used for the state prediction with the implicit

constraint. Firstly, 2nx + 1 sigma points of x̂(t̂k−1) are generated using SigPt(·) (given in the
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Algorithm 1 UGHF-NJ prediction
Generate (2nx + 1) sigma points for x̂(tk−1):

[{x̂i(t̂ik−1)}, {wi}] = SigPt[x̂(t̂k−1),P(t̂k−1), κ]

Predict sigma points using Gauss-Newton algo.:

for all x̂i(t̂ik−1), i ∈ {1, . . . , 2nx + 1} do

x0 = x̂i(t̂ik−1)

x̆i(t̂ik|t̂ik−1) = GaussN[g(x1,x0)]

end for

Regen sigma points with process noise:

x̂(t̂k|t̂k−1) =
2nx+1∑
i=1

wix̆i(t̂ik|t̂ik−1)

P(t̂k|t̂k−1) =
2nx+1∑
i=1

wix̃i(t̂ik|t̂ik−1)(x̃i(t̂ik|t̂ik−1))′ + Q(∆k)

[{x̂i(t̂ik|t̂ik−1)}, {wi}] =

SigPt[x̂(t̂k|t̂k−1),P(t̂k|t̂k−1), κ]

where

x̃i(t̂ik|t̂ik−1) = x̆i(t̂ik|t̂ik−1)− x̂(t̂k|t̂k−1)

κ is a spread scalar of the sigma points.

Appendix), where nx is the dimension of the state vector. Secondly, each sigma point is predicted to

t̂ik using the Gauss-Newton algorithm GaussN(·) (also given in the Appendix) based on the Gauss-

Helmert function g(x1,x0), where i is the index of the sigma points. The 2nx + 1 GaussN(·) find

x1 = x̆i(t̂ik|t̂ik−1) from x0 = x̂i(t̂ik−1) iteratively. Thirdly, the predicted sigma points are re-generated

with considering also the process noise (with the approprate larger prediction covariance).

Algorithm 2 maps the predicted state to the measurement space. The challenge here is that we

cannot obtain the Doppler shifted frequency fR(tRk ) in the measurement from the predicted state

directly. The range rate ṙ(tRk ) in (33) cannot be derived from the bistatic range r(tRk ), which has no

analytical form in terms of tRk . We use an numerical approach, called numerical Jacobian (NJ), to

obtain ṙ(tRk ) from r(tRk ). It is known that the slope of the tangent line is the derivative of a nonlinear

function at a point of interest. The principle of the NJ(·) (given in the Appendix) is to find the best

linear fit to a nonlinear function based on a few weighted points around the point of interest. If we

can provide these weighted points around [tRk ,r(tRk )], its derivative ṙ(tRk ) can then be computed using

NJ(·). Firstly, we generate the reception time set around tRk using SigPt(·), i.e.,

{tR,j
k } = {tRk , tRk − σtRk , t

R
k + σtRk } j = 1, 2, 3 (39)
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Algorithm 2 UGHF-NJ mapping the predicted state to measurement

[{tR,j
k }, {wj}] = SigPt[tRk , σtRk , κ]

for all x̂i(t̂ik|t̂ik−1), i ∈ {1, . . . , 2nx + 1} do
x0 = x̂i(t̂ik|t̂ik−1)
for j = 1 : 3 do

x̂i,j(t̂jk|t̂ik−1) = GaussN
[
g(x1,x0)|tRk=tR,j

k

]
r̂i,j(tRk )← x̂i,j(t̂jk|t̂ik−1)

end for
ˆ̇r
i
(tRk ) = NJ[{tR,j

k }, {r̂i,j(tRk )}, {wj}]
f̂R,i(tRk )← using (33)
b̂i(tRk )← using (32)
zi(tRk ) = [b̂i(tRk ) f̂R,i(tRk )]′

end for

ẑ(tRk ) =
2nx+1∑
i=1

wiẑi(tRk )

where σtRk is a very small shift from tRk . Its weight set is {wj}. Secondly, we use GaussN(·) to

obtain the predicted state set {x̂i,j(t̂k|t̂k−1)} corresponding to the reception time set {tR,j
k } for the

ith sigma point of the predicted state (obtained from Algorithm 1). The bistatic range can then be

computed using (34). The set of bistatic ranges corresponding to {tR,j
k } for the ith sigma point of

the predicted state is

{r̂i,j(tRk )} = {r̂i(tRk ), r̂i(tRk − σtRk ), r̂i(tRk + σtRk )} j = 1, 2, 3 (40)

Thirdly, we use these two sets, {tR,j
k } and {r̂i,j(tRk )}, which form three points around [tRk , r̂

i(tRk )]

to evaluate the range rate ˆ̇r
i
(tRk ) using NJ(·). Once ˆ̇r

i
(tRk ) is obtained, fR,i(tRk ) can be computed

using (33), and the predicted measurement zi(tRk ) follows.

Algorithm 3 updates the predicted state based on the measurment z(tRk ). This step is the same as

in the conventional UKF.

IV. SIMULATION RESULTS

The IMM-UGHF-NJ is tested with simulated data in this section. The simulated scenarios are

shown in Fig. 3. Twelve targets move in CV-CT-CV motion with different speeds and ranges. They

are categorised into four groups based on the ranges (or distances) to the transmitter and receiver,

which are between 0–5km, 5–10km, 10–15km and 15–20km. Each category has three targets with

speeds 10m/s, 20m/s and 30m/s, respectively. All targets have two CV legs linked by a CT arc. The

durations of the first CV, CT and the second CV are 90s, 45s and 90s, respectively. The CT arc

is a 90o right turn with turn rate 2o/s. The transmitter and receiver are located at (-3500m,0m) and
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Algorithm 3 UGHF-NJ update
x̂(t̂k) = x̂(t̂k|t̂k−1) + Kkν(tRk )

P(t̂k) = P(t̂k|t̂k−1)−KkS(tRk )K′k
where

ν(tRk ) = z(tRk )− ẑ(tRk )

Kk = PxzS(tRk )−1

S(tRk ) = R + Pzz

Pxz =
2nx+1∑
i=1

wix̃i(t̂ik|t̂ik−1)z̃i(tRk )
′

Pzz =
2nx+1∑
i=1

wi[z̃i(tRk )z̃i(tRk )′]

z̃i(tRk ) = ẑi(tRk )− ẑ(tRk )

x̃i(t̂ik|t̂ik−1) = x̂i(t̂ik|t̂ik−1)− x̂(t̂k|t̂k−1)

(3500m,0m), respectively. The transmitter emits a CW signal with frequency 1000Hz. The sampling

interval of the receiver is T = 1s. The measurement errors of bearing and Doppler shifted frequency

at receiver are assumed Gaussians with standard deviations σb = 1o and σf = 0.25Hz, respectively.

The sound propagation speed in water is cp = 1484m/s.
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Fig. 3. Test scenarios.

The following two algorithms are used in testing:

• IMM-UKF: The mode-matched filters are UKF. They estimate target position and velocity only.

The propagation delay is not taken into consideration at all. The Doppler shifted frequency in

the measurement model is based on (37) which is commonly used in multistatic radar tracking
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system. The target times are taken as the signal reception times by the receiver.

• IMM-UGHF-NJ: This is the new algorithm proposed in this paper. The propagation delay is taken

into consideration in the state estimation, and the target times attached to the target trajectory

are estimated from multiple UGHF-NJs.

One CV model and two CT models (CT-L and CT-H) are used in both IMM estimators. The CT-L

and CT-H have low and high turn rate process noises, respectively. This setup can provide a fast turn

rate adaptation during model switching [4]. The initial mode probabilities for the three models are

1/3. The probability transition matrix Π3 is

Π3 =


0.950 0.025 0.025

0.025 0.950 0.025

0.025 0.025 0.950

 (41)

The measurement error covariance R is

R = diag[(1o)2 (0.25Hz)2] (42)

In the IMM-UGHF-NJ, the process noise covariances qCV, qCT-L and qCT-H are, respectively,

qCV = diag[(0.1m/s2)2 (0.1m/s2)2 (0.1s)2] (43)

qCT-L = diag[(0.1m/s2)2 (0.1m/s2)2 (0.1o)2 (0.1s)2] (44)

qCT-H = diag[(0.1m/s2)2 (0.1m/s2)2 (1o)2 (0.1s)2] (45)

and κ is set to 1 in all SigPt(·) (see the Appendix), and σtRk is set to 0.1s in Algorithm 2. The initial

state estimates are

x̂CV(t0) = [r̂0 sin b0 r̂0 cos b0 ˆ̇x0 ˆ̇y0 t̂0]
′ (46)

x̂CT-L(t0) = [r̂0 sin b0 r̂0 cos b0 ˆ̇x0 ˆ̇y0 0.1o t̂0]
′ (47)

x̂CT-H(t0) = x̂CT-L(t0) (48)

where

r̂0 ∼ N (rR0 , σ
2
r ) (49)

b0 = b(tR0 ) (50)

ˆ̇x0 ∼ N (ẋ0, σ
2
ẋ) (51)

ˆ̇y0 ∼ N (ẏ0, σ
2
ẏ) (52)
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t̂0 = tR0 − r̂0/cp (53)

with rR0 the true value of the range from the target at time t0 to the receiver at time tR0 , σr = 400m, and

b(tR0 ) is the measured bearing at time tR0 , ẋ0 and ẏ0 are the true target velocities, and σẋ = σẏ = 4m/s.

The initial state error covariances for the three models are

PCV(t0) =



Pxx Pxy 0 0 0

Pyx Pyy 0 0 0

0 0 σ2ẋ 0 0

0 0 0 σ2ẏ 0

0 0 0 0 (σr/c
p)2


(54)

PCT-L(t0) = PCT-H(t0)

=



Pxx Pxy 0 0 0 0

Pyx Pyy 0 0 0 0

0 0 σ2ẋ 0 0 0

0 0 0 σ2ẏ 0 0

0 0 0 0 (0.02o)2 0

0 0 0 0 0 (σr/c
p)2


(55)

where

Pxx = (r̂0σb cos b0)
2 + (σr sin b0)

2 (56)

Pyy = (r̂0σb sin b0)
2 + (σr cos b0)

2 (57)

Pxy = Pyx = (σ2r − r̂20σ2b ) sin b0 cos b0 (58)

The parameters in the IMM-UKF, including the process noise covariances, initial states and initial

state error covariances are the same as the IMM-UGHF-NJ, but the elements corresponding to the

target time are removed.

The simulation results present the root mean square errors (RMSE) of the estimated target positions

and speeds obtained from 100 Monte Carlo runs. The estimated position and speed errors at time t̂k

are computed by

poserr(t̂k) =
√

[x̂(t̂k)− x(t̂k)]2 + [ŷ(t̂k)− y(t̂k)]2 (59)

sperr(t̂k) =
√

[ˆ̇x(t̂k)− ẋ(t̂k)]2 + [ˆ̇y(t̂k)− ẏ(t̂k)]2 (60)

where x̂(t̂k), ŷ(t̂k), ˆ̇x(t̂k) and ˆ̇y(t̂k) are the estimated target positions and velocities in the x and y

coordinates respectively, x(t̂k), y(t̂k), ẋ(t̂k) and ẏ(t̂k) are the true target positions and velocities in
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the x and y coordinates respectively, and t̂k is the estimated target time in estimation cycle k.

Tables I and II show the averages of position and speed RMSE for the two algorithms for the twelve

simulated targets from the four categories displayed in Fig. 3. Figs. 4–7 show the position RMSE

versus time of the two algorithms for four simulated targets, one from each category, respectively.

They are the targets in the range between 0–5km with speed 30m/s, range between 5–10km with

speed 10m/s, range between 10–15km with speed 20m/s and range between 15–20km with speed

30m/s. It can be seen that the IMM-UGHF-NJ outperforms the IMM-UKF for all targets. The

accuracy improvement is target range and speed dependent. A faster and longer range target has

more improvement than a slower one at a shorter range. This is because that estimation error of the

IMM-UKF depends on the target speed and propagation delay τRk (details can be found in Section

V-C of [12]). The range from the target to the receiver is proportional to the propagation delay. From

the results we can say that the estimation error without considering propagation delay is significant,

especially for a long range target or a fast target (such as a speed boat or torpedo).

TABLE I
AVERAGES OF POSITION RMSE

Target Target
Range Speed IMM-UKF IMM-UGHF-NJ Improv.
(km) (m/s) (m) (m) (m)
0–5 10 412.6 411.9 0.7

20 397.9 375.4 22.5
30 319.3 281.8 37.5

5–10 10 406.5 400.8 5.7
20 387.4 336.0 51.4
30 438.4 325.2 113.2

10–15 10 413.1 401.5 11.6
20 489.9 428.2 61.7
30 523.0 369.7 153.3

15–20 10 436.8 412.7 24.1
20 481.0 407.5 73.5
30 614.2 399.5 214.7

The maneuvering mode probabilities of the two IMM filters are also investigated. Figs. 8–11 show

the sum of the mode probabilities of the two CT models (which represents the target maneuvering

probability) versus time for the four targets, respectively. It can be seen that the maneuvering prob-

ability for both filters increases when the target is maneuvering. The IMM-UGHF-NJ reacts faster

than the IMM-UKF. A delay in the model switching for a long range target (> 5km) is observed.

However, the mode probability does not match the ground truth very well when the target is in CV

motion. This is because the turn rate ω in CT models can adapt to a small value when the target is

in CV motion.
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TABLE II
AVERAGES OF SPEED RMSE

Target Target
Range Speed IMM-UKF IMM-UGHF-NJ Improv.
(km) (m/s) (m/s) (m/s) (m/s)
0–5 10 1.9 1.8 0.1

20 2.4 2.0 0.4
30 2.9 2.4 0.5

5–10 10 2.0 1.8 0.2
20 2.7 1.9 0.8
30 3.8 2.1 1.7

10–15 10 2.4 1.9 0.5
20 3.5 1.9 1.6
30 5.0 2.2 2.8

15–20 10 3.0 2.4 0.6
20 4.3 2.0 2.3
30 6.2 2.1 4.2
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Fig. 4. Position estimate RMSE versus time for the target with speed=30m/s and range less than 5km.

To evaluate the consistency of the IMM-UGHF-NJ and IMM-UKF, the average normalized esti-

mation error squared (NEES) is evaluated. The average (2D) position NEES at time t̂k for N Monte

Carlo runs is [1]

ε̄(t̂k) =
1

2N

N∑
i=1

x̃i
1:2(t̂k)′[Pi

1:2,1:2(t̂k)]−1x̃i
1:2(t̂k) (61)

where i the run index, Pi
1:2,1:2(t̂k) is the position estimate error covariance submatrix at the estimated

target time t̂k, and

x̃1:2(t̂k) = x̂1:2(t̂k)− x1:2(t̂k) (62)

The two-sided 95% probability region for a 200 degrees of freedom (N = 100, dimension of x1:2 = 2)

chi-square random variable is [162, 241.2]. Dividing by 200, the average NEES interval is [0.81, 1.21].
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Fig. 5. Position estimate RMSE versus time for the target with speed=10m/s and range 5–10km.
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Fig. 6. Position estimate RMSE versus time for the target with speed=20m/s and range 10–15km.
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Fig. 7. Position estimate RMSE versus time for the target with speed=30m/s and range 15–20km.
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Fig. 8. Maneuvering probability versus time for target with speed=30m/s and range less than 5km.
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Fig. 9. Maneuvering probability versus time for target with speed=10m/s and range 5–10km.
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Fig. 10. Maneuvering probability versus time for target with speed=20m/s and range 10–15km.
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Fig. 11. Maneuvering probability versus time for target with speed=30m/s and range 15–20km.
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Fig. 12. Four targets position NEES versus time for the IMM-UGHF-NJ.
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Fig. 13. Four target position NEES versus time for the IMM-UKF.

Fig. 12 shows the average position NEES versus time of the IMM-UGHF-NJ for the four targets
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with expected value 1. It can be seen that most of the position NEES are within the interval

[0.81, 1.21]. There are two exception cases out of the interval. One is at the model switching times

which are around 90s and 135s. Another one is at the ending part of the near range target (0–

5km, 30m/s). When the target is switching between the CV and CT motions, the IMM-UGHF-NJ

cannot adapt to the correct model immediately, and this causes short delay in the maneuver start and

maneuver end, but these delays are shorter than for the IMM-UKF. For the near range target (0–5km,

30m/s), the NEES is below the lower bound 0.81 at the ending part (t > 160s). We can observe from

Fig. 8 that the maneuvering probability is greater than 0.24 when t >160s. It is apparently worse

than for the other three targets shown in Figs. 9–11. This is caused by the marginal observability of

the CV motion model from the measurements, and results in the maneuvering probability (sum of

the probabilities of CT models) not small enough. The error covariance of the combined estimate is

too large (pessimistic) when the contribution of the incorrect models (the maneuvering models with

probability around 0.25) cannot be overlooked. The small NEES is therefore caused by this large

error covariance.

Fig. 13 shows the NEES of the IMM-UKF for the same four targets. All of them are above the upper

bound 1.21. Obviously, the IMM-UKF provides biased estimation without considering propagation

delay.
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Fig. 14. Position estimate RMSE versus time of the IMM-UGHF-NJ using two-model and three-model for the target with
speed=20m/s and range 10–15km.-

We also compare the results of using three models and two models in the IMM-UGHF-NJ. The

models and parameters in the three-model configuration have been defined before. The two-model

IMM-UGHF-NJ uses one CV model and one CT model. Their initial mode probabilities are 1/2, and
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Fig. 15. Position estimate RMSE versus time of the IMM-UGHF-NJ using two-model and three-model for the target with
speed=30m/s and range 15–20km.

the probability transition matrix Π2 is

Π2 =

 0.95 0.05

0.05 0.95

 (63)

The process noises the initial states in the two-model estimator are set as the same for the CV

and CT in the three-model case, except the process noise variance on turn rate is set as (0.5o/s)2

(intermediate value between those in the CT-L and CT-H models). Figs. 14 and 15 show the position

estimate RMSE versus time of using two models and three models for the two targets (10–15km,

20m/s and 15–20km, 30m/s). It can be seen that there is no difference in the first leg (t < 90s)

between two-model and three-model IMM-UGHF-NJs. Once the targets start maneuvering, the three-

model IMM-UGHF-NJ outperforms the two-model version. This is due to the model CT-H with high

process noise on the turn rate. It allows the turn rate to adapt to the correct value quickly during

model switchings. Meanwhile, the CT-L model with slow change in turn rate can balance the CT-H

after model switching.

V. CONCLUSIONS

This paper developed the IMM-UGHF-NJ filter to track maneuvering targets using bistatic CW-CAS

in the presence of propagation delay. The IMM-UGHF-NJ can overcome the two challenges of this

tracking problem, namely, the implicit state transition model and absence of analytical expression of

the Doppler shifted frequency in the measurement model. Simulation tests were conducted on targets

with different ranges and speeds. Results show that the IMM-UGHF-NJ outperforms the IMM-UKF

which does not take the propagation delay into consideration. It is also found that the estimate accuracy

improvement of the IMM-UGHF-NJ over the IMM-UKF is more significant for a longer range or
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a higher speed target. Such a target (for example a speed boat or a torpedo) needs an appropriate

filter (IMM-UGHF-NJ) to handle the propagation delay. A statistical study of the results was also

conducted through the NEES. The results show that the IMM-UGHF-NJ is a consistent filter in most

of the cases, except the situations when the target motion uncertainty cannot be well observed from

measurements. The NEES results of the IMM-UKF are far above the upper bound because of its

biased estimation due to ignoring the propagation delay.

APPENDIX

The three algorithms SigPt(·), GaussN(·) and NJ(·) used in IMM-UGHF-NJ are given next.

a) SigPt(·) generates the sigma points for a random variable x with covariance Px [7].

[xi, wi] = SigPt(x,Px, κ) i = 1, . . . , 2nx + 1 (64)

where

x1 = x (65)

xi = x +

[√
(nx + κ)Px

]
i−1

i = 2, · · · , nx + 1 (66)

xi = x−
[√

(nx + κ)Px

]
i−nx−1

i = nx + 2, · · · , 2nx + 1 (67)

w0 =
κ

nx + κ
i = 1 (68)

wi =
1

2(nx + κ)
i = 2, · · · , 2nx + 1 (69)

where nx is the dimension of x,
[√

(nx + κ)Px

]
i∗

indicates the i∗th column of the matrix [·], and

κ is a scalar that determines the spread of sigma points.

b) GaussN(·) is a Gauss-Newton algorithm to obtain the solution of an implicit equation g(·) = 0

iteratively [11][12] and yields

x̂1 = GaussN[g(x1,x0)] (70)

where x0 is known. The iteration procedure is

x̂j+1
1 = x̂j

1 + (Aj)−1g(x̂j
1,x0) (71)
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where j is the iteration index, Aj is the Jacobian matrix defined by

Aj =
∂g[(x̂j

1,x0)]

∂x̂j
1

(72)

c) NJ(·) calculates the Jacobian (or derivative) H of a function

z = h(x) (73)

at a point of interest x0 numerically [8][13][9]. There is no analytical form for h(·), but z can be

obtained through numerical method from a given x. The Jacobian is

H = NJ[{xi}, {zi}, {wi}] (74)

where {xi} is the sigma point set around x0 generated from a very small covariance, {zi} is its

corresponding set after transformation and {wi} is the set of weights. The NJ is implementing

through the following steps:

1) Form the sigma point set

X̄ =

 x1 x2 · · · x2nx+1

1 1 · · · 1

−
 x1

0

 (75)

Z =



z̄1

z̄2

...

z̄l


= [ z1 z2 · · · z2nx+1 ] (76)

where x1 = x0, and l is the dimension of z.

2) Estimate H using the weighted least squares (WLS) algorithm

aj = (X̄WX̄′)−1X̄W(z̄j)′ (77)

ˆ̄H =

[
a1 a2 · · · al

]′
(78)

Ĥ = ˆ̄H(1 : l, 1 : nx) (79)

where W = diag({wi}), j ∈ {1, . . . , l}, and Ĥ is ˆ̄H without the last column.
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