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Abstract— This paper presents a new method, in an 

underwater context, of estimating the trajectory of a target 

assumed to be in constant velocity motion. The observer 

system is composed of a transmitter (emitting continuously, 

said also in high duty cycle mode) and a set of passive 

underwater acoustic sensors (e.g. receiving sonobuoys) not 

necessarily collocated with the transmitter. Each receiver 

detects the single-tone signal emitted by the transmitter after 

its reflection on the target. The two sets of doubly Doppler-

shifted frequency measurements for each receiver make the 

target motion analysis (TMA) feasible, even when only one 

receiver is available. First, we develop the exact model of the 

bistatic received frequencies and then we compute the 

Cramér-Rao lower bound (CRLB) when the number of 

receivers is 1, 2, or 3, the measurements being corrupted by 

an additive and time-independent Gaussian noise. Finally, 

using some realistic scenarios, we show that the maximum 

likelihood estimated is actually efficient.  

Keywords— high duty cycle, bistatic sonar, multi-static sonar, 

Doppler-only TMA, estimation, Fisher Information Matrix, 

Cramér-Rao lower bound. 

I. INTRODUCTION 

Continuous transmission was first in use in the 1930s and 

1940s for radar applications and electromagnetic (EM) 

barriers
1
. In 1984, Gough et al. [2] first proposed continuous 

transmission frequency modulated (CTFM) sonar in order to 

increase the signal-to-noise ratio and to provide continuous 

target location updates. The principle of bistatic sonar was 

pioneered by Henry Cox in his famous 1988 NATO ASI paper 

[1]. Cox poses the “fundamentals of bistatic active sonar”, 

introduced by the first sentence of his paper, which 

summarizes perfectly the context: “the bistatic situation is 

characterized by the triangle of source, target and receiver 

positions, and by their velocities”. The so-called high duty 

cycle (HDC) sonar, named also continuous active sonar 

(CAS), is a logical combination of both aspects.  Since the 

publication of this article by H. Cox 27 years ago, numerous 

                                                           
1
 See https://en.wikipedia.org/wiki/History_of_radar 

papers have become available in the open literature, dealing 

with several questions about HDC sonar: How many 

transmitters and receivers must be used to obtain a certain 

performance of target detection and target position estimation? 

How can the positions of drifting receivers and transmitters be 

estimated? How can ad hoc signal processing be realized? 

HDC sonar was studied in the late 1990s following radar 

applications, e.g. CTFM radar. 

Among the numerous variations of HDC concepts, DeFerrari 

studied continuous m-codes in order to extend the temporal 

coherent integration time compared to single pulse sonar [3, 

4]. Yang [5] proposed a continuous tracking for underwater 

surveillance from what he called Dopplergram, using 

continuous wave (CW) signals. Blanc-Benon et al. [6] studied 

CAS-TMA Cramér-Rao lower bound (CRLB) in a maritime 

patrol aircraft context with Doppler and bearing measurements 

from acoustic sonobuoys. In [10], Liang et al. focused on the 

signal processing aspect of multi-static continuous active 

sonar. 

In this paper, we study the effect of the propagation delay on 

Doppler-only TMA in a HDC sonar system. The target has a 

constant velocity motion. We compare the behavior of the 

maximum likelihood estimator (MLE) when this delay is 

taken into account and when it is not. To do this, we consider 

one transmitter and one or several receiver(s) for various 

typical scenarios. In each of them, we derive the CRLB, the 

empirical bias and the empirical covariance matrix of the 

MLE via numerous Monte-Carlo simulations. 

The paper is organized as follows: 

In Section II, the exact model of a Doppler-shifted frequency 

is rigorously established and the common approximation in 

use with the monostatic sonar domain is derived. In Section 

III, the exact model and an approximated model are compared 

in the bistatic situation. Section IV is devoted to the Doppler-

only TMA estimation in a bistatic situation. In particular, we 

illustrate by simulations that using the approximated model 

yields a biased MLE, whereas the exact MLE is efficient in 

practice. Section V presents an extension of the proposed 

method to multi-static situations. 



The conclusion addresses perspectives on HDC/CAS sonar 

and future enhancements regarding the sonobuoy drift 

problem and bearing contribution. 

 

II. THE MODELS OF THE DOPPLER EFFECT 

Suppose that a source S is radiating continuously a signal

 tsE
. At time t , a receiver R detects the signal  tsR

 defined 

by     ttsts ER  . The delay  t  is the propagation time 

taken by the wave carrying the signal to reach the receiver. If 

the signal  tsE
 is a single tone, that is      tfatsE 02sin , 

the received signal is         ttfatsR 02sin' . It 

follows that the instantaneous frequency at time t  is  

    tftf  10
. (1) 

This is the exact expression of the Doppler-shifted received 

frequency. Consequently, the time derivative of  t  is 

needed. The delay is recursively defined by 

 
    

c

tPttP
t

RS 



 , (2) 

where c  is the sound wave speed in the medium,  tPR
 and 

 tPS
 are the respective locations of R and S at time t . We 

define the range at this time as       tPtPtr RS  . When 

the source is motionless, we have  
 
c

tr
t  , and 

consequently, eq. (1) becomes 

 
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. (3) 

When the source has a constant velocity 
SV , the time delay 

 t  is proven to be (from (2)) 
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with      tPtPtP RSRS  . Consequently, the time derivative 

of  t  depends also on the motion of the receiver. Because 

we are concerned in the multi-static configuration by 

stationary receivers only, we will compute  t  for a 

motionless receiver. Under this assumption, from (4) we get  
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or equivalently 
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where     tPVt RSS , , 
SS Vv  , and  

     tvtVtr SS  coscos   (see [8]). As a consequence, we 

can propose two approximations of  t :  

First order approximation (from (5)):  
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Second approximation ( cvS  ): 

If we neglect 
2










c

vS in (6), we get the approximation 

 
 
c

tr
t


  . (7) 

With this second approximation, we end up with the common 

expression of the Doppler-shifted frequency: 

 
 










c

tr
ftf


10

. In conclusion, when the source is in CV 

motion, and the receiver is motionless, the common 

expression of the Doppler-shifted frequency is the result of 

two successive approximations. 

Note that, in this case,  
  

c

ttr
t





 . 

III. THE DOPPLER EFFECT IN A BISTATIC CONFIGURATION 

In a bistatic configuration, a target T, an emitter (or 

transmitter) E, and a receiver R are assumed to lie on the same 

horizontal plane. The transmitter sends a signal continuously 

and the target plays the role of mirror: it reflects the signal 

emitted by the transmitter toward the receiver (see Fig. 1). 

Unlike a classic active system, the receiver stands apart from 

the transmitter. So, the receiver detects the signal  tsR
 

defined by     ttstsR 2Reflected2   , where 
Reflecteds is the 

signal reflected by T, 
2  is the propagation time of the target–

receiver range, and 
2 accounts for the attenuation due to 

propagation. The signal 
Reflecteds  is the signal emitted by E, 

propagation time between E and T old: 

    uusus E 11Reflected   , for any u , 
1 accounts for the 

signal attenuation. In our configuration, E and R are 

motionless. 

 
Fig. 1: Standard scenario of the bistatic HDC sonar 

 

In the couple (E,T), the source is E; hence  
 
c

tr
t 1

1  . In the 

Receiver  R detects  

sR(t) 

Transmitter  E 

P
T
( t - (t)) 

Distance traveled by 

the wave r2( t – (t)) 

Position of the Target T 

when it reflects the signal 

emitted by E 

P
T
( t ) 



couple (T, R), T plays the role of the source; therefore, 

 
  

c

ttr
t 22

2





 . The chain rule allows the signal detected 

by the receiver to be defined as 

       ttttstsR 212E21    for any t . Again, when 

Es  is a single tone with the frequency 
0f , the instantaneous 

received frequency is 

          ttttftf 21220 11    . (8) 

Once more, several approximations of  tf  can be proposed:  

The first approximation is based upon the first-order 

approximation     ttt 121    . We get 

                 tfttftttftf 12101220 1111       (9). 

Another approximation consists of using the approximation 

(7) for  t2 , that is  
 
c

tr
t 2

2


  . We then get 
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A third approximation is obtained by neglecting the term 

   
2

21

c

trtr 
; we end up with the common approximation used in 

the bistatic radar systems:  

 
   

 tf
c

trtr
ftf 3

21
0 1 







 


 . (11) 

An example of received frequencies versus time, for the exact 

model, and for the three approximated models is given 

hereafter. The scenario is the following: the transmitter and 

the receiver are respectively located at  T
03500  (m) and 

 T
03500  (m). The target has a speed of 30 m/s and a 

heading of 90°. At t=650 s, the target is at position  T
10000

(m). The transmitter emits a single tone with a frequency 

10000 f Hz. 

Fig. 2(a) and 2(b) depict  tf  in blue,  tf1
 in green,  tf2

 in 

cyan, and  tf3
 in magenta for 13000  t s. We also 

simulated the temporal received signal  tsR
, sampled at 3000 

Hz, and performed an 8192-point FFT after zero-padding. The 

outputs of the FFT are plotted in red in Figs. 2 (a) and 2 (b), 

which is a magnification of Fig. 2 (a). This simulation shows 

that the exact model fits the frequency track produced by the 

spectral analysis. It also exhibits the approximation error in 

the three approximated models. In this example, one can see 

the double closest-point-of-approach (CPA) inflexion points: 

the first one regarding the transmitter, the second one 

regarding the receiver. 

 
Fig. 2 (a): Frequency tracks with double inflexion CPA points 

(x axis: time in seconds, y axis: frequency in Hz). 

 
Fig. 2 (b): Magnification of the frequency tracks; the dotted 

line is given by the output of the FFT. 

Note that in a radar bistatic system, the approximation (11) is 

acceptable thanks to the EM waves’ speed (which is huge 

relative to the aircraft speed) unlike in the sonar domain. 

IV. TMA IN A BISTATIC SYSTEM 

A. Problem setting 

The common configuration of a simple bistatic system 

consists of a transmitter E and a receiver R, both mounted on 

sonobuoys. In this study, they are assumed to be stationary. A 

target T is in CV motion and is detected only by the receiver 

from the signal coming from T. This signal is actually emitted 

by E and reflected by T toward R. The target velocity is 

denoted as 
TV , and its position at the very beginning of the 

scenario is  0TP . The transmitter and the receiver are located 

at 
EP  and 

RP , respectively. After an ad hoc spectral analysis, 

only the set of Doppler-shifted frequency measurements is 

available:     kkkm tftf  , for Kk ,,1   and 
k the 

corrupting noise, which means that the sonobuoy carrying the 

receiver is not a directive sonobuoy [7] but rather an 

omnidirectional buoy. Implicitly,  ktf  is completely defined 

by   TT

T

T

T VPX 0 . Our goal is to estimate X , given 

  Kktf km ,,1,  . 

To do this, we have two options: (i) use the correct model 

given by (8); or (ii) use an approximate model. We choose to 

put in competition the correct model and the approximated 

model (11). Indeed, the correct model is expected to give 

better results in the estimation process, but the computational 

burden will definitively be heavy compared to an estimation 

based upon the model (11). 

 

 

Approximated 

mismatch : 3 Hz  



B. Observability 

For the approximated model (11), X  was proven to be 

observable in [11] by using the rank of the Fisher information 

matrix (FIM). Obviously, the state vector X  is not observable 

since X  is undistinguishable from its image by the axial 

symmetry around the line (ER) and from its image by the axial 

symmetry around the perpendicular bisector of the segment 

[ER]. The line [ER] and the bisector define 4 sectors of the 

plane. We claim that, in each sector, the condition of 

observability is that the target must not travel on the line 

defined by the couple (E, R). This will be the topic of a future 

paper. 

For the correct model (8), observability has not been proven 

so far. To bypass this lack in the rest of the paper, we will 

consider scenarios for which the FIM is non-singular, so X  is 

locally observable [9]. 

 

C. Fisher Information Matrix and Cramér-Rao lower 

bound 

The classic expression of the FIM under Gaussian hypothesis 

is      
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We have to compute the following four quantities:  Xtk ,1 , 

 Xtk ,2 ,  Xtk ,1 , and  Xtk ,2 . 

We end up with 
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The detailed computations are presented in the Appendix. 

 

D. Estimation 

We have chosen the MLE, which is also the least squares 

estimator X̂ , that minimizes       




K

k

kkm tftfXC

1

2

2

1


for 

the correct model (8), or the approximated MLE 
appX̂ , that 

minimizes       




K

k

kkmapp tftfXC

1

2

32

1


 for the 

approximated model (11). Both are obtained by a numerical 

routine (Gauss-Newton). 

 

E. Monte-Carlo simulations 

Our analysis is based on 500 Monte-Carlo runs. In the 

scenarios used: 

 T

EP 03500  (m) and   T

RP 03500  (m). The 

measurements are time stamped at 1 Hz rate:   tktk  1 , 

with st 1 . The frequency 
0f  is equal to  1000  Hz. We 

choose a reasonable standard deviation of the frequency 

measurement: 25.0  Hz. All the measurements are 

simulated using the correct model. The total duration is 1300s. 

In this configuration, we consider three targets, whose 

respective trajectories are defined by  

 T
X 025000,25000,101  (the target sails eastwards), 

 T
X 100000,7500,22  (the target sails southwards), 

 and  T
X 1315000,14500,23  (the target sails towards 

south-east). For each target, the respective performances are 

presented in tables, whose first column is the empirical bias of 

appX̂ , while the second column is the empirical bias of X̂ . The 

empirical standard deviations of the components of 
appX̂  and 

X̂  are written in the third and fourth columns. The minimal 

standard deviations (computed from the CRLB with the 

correct model) of the components of X  are the elements of the 

fifth column. Figures depict the estimate sets in the plane 

(x,y): the correct estimated positions are represented by blue 

dots, whereas the approximated estimated positions are given 

by red crosses. The 90% confidence ellipse is plotted in 

magenta. 

1) Scenario 1 : 
1XX    

TABLE I: PERFORMANCES OF 
appX̂  AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  
Bias ̂  

CRLB  
Approximated  

model  

Exact 

model 

Approximated  

model 

Exact 

model 

-10000 m 11037 111.32 2671.4 2734.7 2510.5 

-25000 m 9112.7 103.33 2734.9 878.85 781 

25 m/s 3.77 0.14 1.67 0.23 0.15 

0 m/s 12.07 0.07 3.20 2.65 2.43 

 

 
Fig. 3: Target’s trajectory, initial positions estimated with 

exact model (blue dots) and with approximated model (red 

crosses), and the 90% confidence ellipse (magenta). 

Note that the estimate clouds are croissant-shaped. 



2) Scenario 2 : 
2XX   

TABLE II: PERFORMANCES OF 
appX̂ AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  
Bias ̂  

CRLB  
Approximated 

model 

Exact 

model 

Approximated 

model 

Exact 

model 

-2500 m 61.04 0.7 17.17 17.19 17 .28 

7000 m 40.37 0.06 5.45 5.42 5.49 

0 m/s 0.09 0.0015 0.02 0.02 0.02 

-10 m/s 0.004 0.0003 0.006 0.006 0.006 

 

 
Fig. 4 (a): Target’s trajectory, initial positions estimated with 

exact model (blue dots) and with approximated model (red 

crosses), and the 90% confidence ellipse (magenta). 
 

 
Fig. 4 (b): A magnification of the clouds of estimates of Fig. 

4(a). 
  

3) Scenario 3 : 
3XX   

TABLE III: PERFORMANCES OF 
appX̂ AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  
Bias ̂  

CRLB  
Approximated 

model 

Exact 

model 

Approximated 

model 

Exact 

model 

-2500 m 4626.4 5.97 205.77 255.37 254.16 

14000 m 1145.9 4.52 34.67 113.9 113.04 

15 m/s 3.9 0.003 0.19 0.18 0.18 

-13 m/s 4 0.009 0.15 0.26 0.26 

 

 
Fig. 5(a): Target’s trajectory and initial positions estimated 

with exact model (blue dots) and with approximated model 

(red crosses). 

 
Fig. 5 (b): A magnification of the clouds of estimates of Fig. 

5(a). 
 

These simulations reveal two facts: (i) the bias induced by the 

approximated model is not negligible; and (ii) the MLE 

performs properly for the exact model (its sample covariance 

matrix – not reported here – is very close to the CRLB and its 

bias is relatively small). A legitimate question must be asked: 

Is this bias persistent if more than one receiver is employed? 

We address this question in the next section. 

 

V. TMA IN MULTI-STATIC CONFIGURATION 

When )1( N receivers are available, we can exploit the 

frequency track collected by each receiver to improve the 

TMA. The criterion is then  



          
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where 
   kmn tf  is the frequency measured by the receiver # n  

at time 
kt , 

nK  is the number of measurements acquired by 

the receiver # n , and 
   kn tf  is the exact model. Consequently, 

the FIM is          
 


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tftfXF
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2
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

. Note that, 

for the sake of simplicity in the writing of the equations, we 

have considered that the measurements are synchronous. But 

we can readily consider TMA when this is not the case: the 

only thing that matters is that the measurements need to be 

time stamped. In the following subsections, we compare the 

respective performances of X̂ , that minimizes (12), and of 

appX̂ , that minimizes (12), in which we replace the correct 

model by the approximated model (11). This comparison is 

based upon scenario 1. 

A. With two receivers 

Since we benefit from a second set of measurements, the 

duration of scenario 1 is reduced to 10 min. 

TABLE IV: PERFORMANCES OF 
appX̂  AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  

Bias ̂  

CRLB  Approximated 

model  

Exact 

model 

Approximated 

model 

Exact 

model 

-10000 m 1619.6 11.28 379 .12 452.41 449.98 

-25000 m 585.71 3.82 343.63 340.82 338.88 

25 m/s 0.55 0.001 0.21 0.21 0.20 

0 m/s 1.85 0.007 0.31 0.37 0.37 

 

 
Fig. 6 (a): Target’s trajectory and initial positions estimated 

with exact model (blue dots) and with approximated model 

(red crosses) in a tri-static configuration. 

 
Fig. 6 (b): A magnification of the clouds of estimates of Fig. 

6(a). 

 

Fig. 6 shows that the bias is maintained when the 

approximated model is used. So, again we increase the 

number of receivers in the next subsection. 

B. With three receivers 

With three receivers, the duration of scenario 1 is now set to 5 

min. 

TABLE V: PERFORMANCES OF 
appX̂  AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  

Bias ̂  

CRLB  Approximated 

model  

Exact 

model 

Approximated 

model 

Exact 

model 

-10000 m 376.69 3.31 59.98 58.67 59.48 

-25000 m 186.52 11.06 198.56 198.11 197.18 

25 m/s 0.06 0.006 0.11 0.11 0.11 

0 m/s 0.81 0.002 0.07 0.06 0.06 

 

 
Fig. 7 (a): Target’s trajectory and initial positions estimated 

with exact model (blue dots) and with approximated model 

(red crosses) in a quadri-static configuration. 



 
Fig. 7 (b):  A magnification of the clouds of estimates of Fig. 

7(a). 

In Fig. 7, a non-negligible bias, whose components are given 

in Table V, is visible when the approximated model is used. 

We note a reduction of the bias with an increasing number of 

receivers. However, the lesson to be drawn from these 

simulations is clear: the approximated model provides a biased 

estimator. For the HDC sonar, we hence recommend to use the 

correct model to construct the MLE, even if it requires more 

computational time. 

Table VI and Fig. 8 present results when simulation duration 

is reduced to 1 minute. 

TABLE VI: PERFORMANCES OF 
appX̂  AND X̂  AND MINIMAL 

STANDARD DEVIATIONS 

X  
Bias ̂  

CRLB  Approximated 

model  

Exact 

model 

Approximated 

model 

Exact 

model 

-10000 m 389.44 5.72 199.3 230.8 230.1 

-25000 m 130.05 14.72 1340.4 1337.9 1338.3 

25 m/s 0.02 0.004 1.02 1.02 1.02 

0 m/s 0.78 0.004 0.16 0.2 0.2 

 
Fig. 8(a): Target’s trajectory and initial positions estimated 

with exact model (blue dots) and with approximated model 

(red crosses) in quadri-static configuration. 

 
Fig. 8 (b): A magnification of the clouds of estimates of Fig. 

8(a). 

 

The good news is that the MLE estimate for an HDC sonar 

system has a covariance matrix compatible with an operational 

exploitation for short favorable scenarios (about one minute), 

which is an advantage in real situations where the sonobuoys 

carrying the transmitter and the receivers are set to drift. 

 

VI. CONCLUSION AND PERSPECTIVES 

Frequency-only TMA in a multi-static sonar configuration has 

been studied in this paper. Two major results were obtained: 

first, the approximated model, widely used in multi-static 

radar systems, induces a non-negligible biased estimator in 

sonar applications. On the contrary, the performance of MLE 

based upon the exact model is compatible with the asymptotic 

performance given by the CRLB: its empirical covariance 

matrix is close to the bound and it is practically unbiased. The 

price is an augmentation of the computation time. Finally, in 

short favorable scenarios, the CRLB allows us to expect TMA 

results that are compatible with the operational exploitation of 

a multi-static system (provided the number of receivers is 

sufficient). 

As HDC sonar is becoming more and more popular [12], 

further studies should analyze the impact of drifting of 

receivers due to ocean currents and in GPS-denied areas. The 

contribution of bearing measurement should also be analyzed 

when using directive receivers in terms of duration to get a 

given target location accuracy compared to the case of 

frequency-only TMA. 

APPENDIX 

For convenience, hereafter we will use the notation 

   tPtP TE1
,     tPtP RT2

, and    tPtr ii  , for 2,1i . We 

start by computing some necessary calculation elements: 
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Now, we are able to give the values of the first two gradients: 
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Computation of   XXtt kkX ,,21    : 

First, we write   XXtt kk ,,21    as the composition of the 

following two functions: 
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