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This paper presents a new method, in an underwater context, of estimating the trajectory of a target assumed to be in constant velocity motion. The observer system is composed of a transmitter (emitting continuously, said also in high duty cycle mode) and a set of passive underwater acoustic sensors (e.g. receiving sonobuoys) not necessarily collocated with the transmitter. Each receiver detects the single-tone signal emitted by the transmitter after its reflection on the target. The two sets of doubly Dopplershifted frequency measurements for each receiver make the target motion analysis (TMA) feasible, even when only one receiver is available. First, we develop the exact model of the bistatic received frequencies and then we compute the Cramér-Rao lower bound (CRLB) when the number of receivers is 1, 2, or 3, the measurements being corrupted by

an additive and time-independent Gaussian noise. Finally, using some realistic scenarios, we show that the maximum likelihood estimated is actually efficient.

I. INTRODUCTION

Continuous transmission was first in use in the 1930s and 1940s for radar applications and electromagnetic (EM) barriers 1 . In 1984, Gough et al. [START_REF] Gough | Continuous Transmission FM Sonar with One Octave Bandwidth and no Blind Time[END_REF] first proposed continuous transmission frequency modulated (CTFM) sonar in order to increase the signal-to-noise ratio and to provide continuous target location updates. The principle of bistatic sonar was pioneered by Henry Cox in his famous 1988 NATO ASI paper [START_REF] Cox | Fundamentals of Bistatic Active Sonar[END_REF]. Cox poses the "fundamentals of bistatic active sonar", introduced by the first sentence of his paper, which summarizes perfectly the context: "the bistatic situation is characterized by the triangle of source, target and receiver positions, and by their velocities". The so-called high duty cycle (HDC) sonar, named also continuous active sonar (CAS), is a logical combination of both aspects. Since the publication of this article by H. Cox 27 years ago, numerous papers have become available in the open literature, dealing with several questions about HDC sonar: How many transmitters and receivers must be used to obtain a certain performance of target detection and target position estimation? How can the positions of drifting receivers and transmitters be estimated? How can ad hoc signal processing be realized? HDC sonar was studied in the late 1990s following radar applications, e.g. CTFM radar.

Among the numerous variations of HDC concepts, DeFerrari studied continuous m-codes in order to extend the temporal coherent integration time compared to single pulse sonar [START_REF] Deferrari | The Application of m-Sequences to Bi-static Active Sonar[END_REF][START_REF] Deferrari | Continuous active pulse compression sonar[END_REF]. Yang [START_REF] Yang | Acoustic Dopplergram for Intruder Defense[END_REF] proposed a continuous tracking for underwater surveillance from what he called Dopplergram, using continuous wave (CW) signals. Blanc-Benon et al. [START_REF] Blanc-Benon | CAS TMA Applied for Sonobuoys in MPA Context[END_REF] studied CAS-TMA Cramér-Rao lower bound (CRLB) in a maritime patrol aircraft context with Doppler and bearing measurements from acoustic sonobuoys. In [START_REF] Liang | On Designing the Transmission and Reception of Multistatic Continuous Active Sonar[END_REF], Liang et al. focused on the signal processing aspect of multi-static continuous active sonar.

In this paper, we study the effect of the propagation delay on Doppler-only TMA in a HDC sonar system. The target has a constant velocity motion. We compare the behavior of the maximum likelihood estimator (MLE) when this delay is taken into account and when it is not. To do this, we consider one transmitter and one or several receiver(s) for various typical scenarios. In each of them, we derive the CRLB, the empirical bias and the empirical covariance matrix of the MLE via numerous Monte-Carlo simulations.

The paper is organized as follows: In Section II, the exact model of a Doppler-shifted frequency is rigorously established and the common approximation in use with the monostatic sonar domain is derived. In Section III, the exact model and an approximated model are compared in the bistatic situation. Section IV is devoted to the Doppleronly TMA estimation in a bistatic situation. In particular, we illustrate by simulations that using the approximated model yields a biased MLE, whereas the exact MLE is efficient in practice. Section V presents an extension of the proposed method to multi-static situations.

The conclusion addresses perspectives on HDC/CAS sonar and future enhancements regarding the sonobuoy drift problem and bearing contribution.

II. THE MODELS OF THE DOPPLER EFFECT

Suppose that a source S is radiating continuously a signal

  t s E . At time t , a receiver R detects the signal   t s R defined by       t t s t s E R   
. The delay   t  is the propagation time taken by the wave carrying the signal to reach the receiver. If

the signal   t s E is a single tone, that is         t f a t s E 0 2 sin , the received signal is               t t f a t s R 0 2 sin ' . It follows that the instantaneous frequency at time t is       t f t f    1 0 .
(1) This is the exact expression of the Doppler-shifted received frequency. Consequently, the time derivative of   t  is needed. The delay is recursively defined by

        c t P t t P t R S      , ( 2 
)
where c is the sound wave speed in the medium,   

            c t r f t f  1 0 . (3) 
When the source has a constant velocity S V , the time delay

  t  is proven to be (from (2))             2 2 2 2 2 2 S RS S RS T S RS T S V c t P V c t P V t P V t        , (4) 
with

      t P t P t P R S RS  
. Consequently, the time derivative of   t  depends also on the motion of the receiver. Because we are concerned in the multi-static configuration by stationary receivers only, we will compute   t  for a motionless receiver. Under this assumption, from (4) we get

              . 2 2 2 2 2 2 2 2 2 2 t P V c t P V V c t P V c V c V t RS S RS T S S RS T S S S         or equivalently       2 2 2 2 2 1 sin 1 1 1 1                              c v c v t c v c v c t r t S S S S     , (5) 
where

      t P V t RS S ,    , S S V v 
, and

      t v t V t r S S   cos cos   
(see [START_REF] Jauffret | Target Motion Analysis by Inverse Triangulation[END_REF]). As a consequence, we can propose two approximations of   t  : First order approximation (from (5)): [START_REF] Blanc-Benon | CAS TMA Applied for Sonobuoys in MPA Context[END_REF], we get the approximation

      2 2 2 2 2 1 sin 2 1 1 1                                              c v c v t c v c v c t r t S S S S     . (6) Second approximation ( c v S  ): If we neglect 2       c v S in
    c t r t     . ( 7 
)
With this second approximation, we end up with the common expression of the Doppler-shifted frequency:

            c t r f t f  1 0 .
In conclusion, when the source is in CV motion, and the receiver is motionless, the common expression of the Doppler-shifted frequency is the result of two successive approximations.

Note that, in this case

,       c t t r t     .

III. THE DOPPLER EFFECT IN A BISTATIC CONFIGURATION

In a bistatic configuration, a target T, an emitter (or transmitter) E, and a receiver R are assumed to lie on the same horizontal plane. The transmitter sends a signal continuously and the target plays the role of mirror: it reflects the signal emitted by the transmitter toward the receiver (see Fig. 1). Unlike a classic active system, the receiver stands apart from the transmitter. So, the receiver detects the signal 

  t s R defined by       t t s t s R 2 Reflected 2     ,
      u u s u s E 1 1 Reflected    
, for any u , 1  accounts for the signal attenuation. In our configuration, E and R are motionless. 

      c t t r t 2 2 2    
. The chain rule allows the signal detected by the receiver to be defined as

          t t t t s t s R 2 1 2 E 2 1         
for any t . Again, when E s is a single tone with the frequency 0 f , the instantaneous received frequency is

              t t t t f t f 2 1 2 2 0 1 1              . ( 8 
)
Once more, several approximations of   t f can be proposed: The first approximation is based upon the first-order approximation

      t t t 1 2 1        . We get                       t f t t f t t t f t f 1 2 1 0 1 2 2 0 1 1 1 1                   (9).
Another approximation consists of using the approximation

(7) for   t 2  , that is     c t r t 2 2     . We then get         t f c t r c t r f t f 2 2 1 0 1 1                   . ( 10 
)
A third approximation is obtained by neglecting the term

    2 2 1 c t r t r  
; we end up with the common approximation used in the bistatic radar systems: 

        t f c t r t r f t f 3 2 1 0 1             . ( 11 
  t f 3 in magenta for 1300 0   t s.
We also simulated the temporal received signal   t s R , sampled at 3000 Hz, and performed an 8192-point FFT after zero-padding. The outputs of the FFT are plotted in red in Figs. 2 (a) and 2 (b), which is a magnification of Fig. 2 (a). This simulation shows that the exact model fits the frequency track produced by the spectral analysis. It also exhibits the approximation error in the three approximated models. In this example, one can see the double closest-point-of-approach (CPA) inflexion points: the first one regarding the transmitter, the second one regarding the receiver. given by the output of the FFT. Note that in a radar bistatic system, the approximation ( 11) is acceptable thanks to the EM waves' speed (which is huge relative to the aircraft speed) unlike in the sonar domain.

IV. TMA IN A BISTATIC SYSTEM

A. Problem setting

The common configuration of a simple bistatic system consists of a transmitter E and a receiver R, both mounted on sonobuoys. In this study, they are assumed to be stationary. A target T is in CV motion and is detected only by the receiver from the signal coming from T. This signal is actually emitted by E and reflected by T toward R. The target velocity is denoted as T V , and its position at the very beginning of the scenario is   0 T P . The transmitter and the receiver are located at E P and R P , respectively. After an ad hoc spectral analysis, only the set of Doppler-shifted frequency measurements is available:

    k k k m t f t f    , for K k , , 1   and
k  the corrupting noise, which means that the sonobuoy carrying the receiver is not a directive sonobuoy [START_REF] Maranda | The Statistical Accuracy of an Arctangent Bearing Estimator[END_REF] but rather an omnidirectional buoy. Implicitly,  

k t f is completely defined by     T T T T T V P X 0  . Our goal is to estimate X , given   K k t f k m , , 1 ,   .
To do this, we have two options: (i) use the correct model given by [START_REF] Jauffret | Target Motion Analysis by Inverse Triangulation[END_REF]; or (ii) use an approximate model. We choose to put in competition the correct model and the approximated model [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-static Doppler-Only Radar[END_REF]. Indeed, the correct model is expected to give better results in the estimation process, but the computational burden will definitively be heavy compared to an estimation based upon the model [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-static Doppler-Only Radar[END_REF].

Approximated mismatch : 3 Hz

B. Observability

For the approximated model [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-static Doppler-Only Radar[END_REF], X was proven to be observable in [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-static Doppler-Only Radar[END_REF] by using the rank of the Fisher information matrix (FIM). Obviously, the state vector X is not observable since X is undistinguishable from its image by the axial symmetry around the line (ER) and from its image by the axial symmetry around the perpendicular bisector of the segment [ER]. The line [ER] and the bisector define 4 sectors of the plane. We claim that, in each sector, the condition of observability is that the target must not travel on the line defined by the couple (E, R). This will be the topic of a future paper. For the correct model ( 8), observability has not been proven so far. To bypass this lack in the rest of the paper, we will consider scenarios for which the FIM is non-singular, so X is locally observable [START_REF] Jauffret | Observability and Fisher Information Matrix in Nonlinear Regression[END_REF].

C. Fisher Information Matrix and Cramér-Rao lower bound

The classic expression of the FIM under Gaussian hypothesis

is            K k k T X k X t f t f X F 1 2 1  , with                   . , 1 , , , , 1 , 2 2 1 2 1 2 0 X t X X t t X X t t X t f t f k X k k k k X k k X                   
We have to compute the following four quantities:  

X t k , 1  ,   X t k , 2  ,   X t k , 1  , and   X t k , 2  .
We end up with

      c X t r t P c X t k k k , 1 , 1 1 1    ,             2 2 2 2 2 2 2 2 2 2 , T k T k T T k T T k V c t P V c t P V t P V X t        ,         c X t r t P c t P V X t k T T k , , 1 1 1 1      ,               . , 2 2 2 2 2 2 2 2 2 2 2 2 2 k T k T T T k T T T T k t P V c t P V V c t P V c V c V X t       



The detailed computations are presented in the Appendix.

D. Estimation

We have chosen the MLE, which is also the least squares

estimator X ˆ, that minimizes             K k k k m t f t f X C 1 2 2 1  for the correct model (8), or the approximated MLE app X ˆ, that minimizes             K k k k m app t f t f X C 1 2 3 2 1 
for the approximated model [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-static Doppler-Only Radar[END_REF]. Both are obtained by a numerical routine (Gauss-Newton). 3) Scenario 3 : These simulations reveal two facts: (i) the bias induced by the approximated model is not negligible; and (ii) the MLE performs properly for the exact model (its sample covariance matrixnot reported hereis very close to the CRLB and its bias is relatively small). A legitimate question must be asked: Is this bias persistent if more than one receiver is employed?

E. Monte-Carlo simulations

3 X X 
We address this question in the next section.

V. TMA IN MULTI-STATIC CONFIGURATION

When ) 1 (  N receivers are available, we can exploit the frequency track collected by each receiver to improve the TMA. The criterion is then

                 N n K k k n k m n n t f t f X C 1 1 2 2 1  (12) 
where

    k m n t f
is the frequency measured by the receiver # n at time k t , n K is the number of measurements acquired by the receiver # n , and

    k n t f is the exact model. Consequently, the FIM is                 N n K k k n T X k n X n t f t f X F 1 1 2 1  . Note that,
for the sake of simplicity in the writing of the equations, we have considered that the measurements are synchronous. But we can readily consider TMA when this is not the case: the only thing that matters is that the measurements need to be time stamped. In the following subsections, we compare the respective performances of X ˆ, that minimizes [START_REF]OCEANS'15, Continuous Active Sonar session, MTS/IEEE Proceedings[END_REF], and of app X ˆ, that minimizes [START_REF]OCEANS'15, Continuous Active Sonar session, MTS/IEEE Proceedings[END_REF], in which we replace the correct model by the approximated model ( 11). This comparison is based upon scenario 1.

A. With two receivers Since we benefit from a second set of measurements, the duration of scenario 1 is reduced to 10 min. Fig. 6 shows that the bias is maintained when the approximated model is used. So, again we increase the number of receivers in the next subsection.

B. With three receivers With three receivers, the duration of scenario 1 is now set to 5 min. In Fig. 7, a non-negligible bias, whose components are given in Table V, is visible when the approximated model is used. We note a reduction of the bias with an increasing number of receivers. However, the lesson to be drawn from these simulations is clear: the approximated model provides a biased estimator. For the HDC sonar, we hence recommend to use the correct model to construct the MLE, even if it requires more computational time. The good news is that the MLE estimate for an HDC sonar system has a covariance matrix compatible with an operational exploitation for short favorable scenarios (about one minute), which is an advantage in real situations where the sonobuoys carrying the transmitter and the receivers are set to drift.

VI. CONCLUSION AND PERSPECTIVES Frequency-only TMA in a multi-static sonar configuration has been studied in this paper. Two major results were obtained: first, the approximated model, widely used in multi-static radar systems, induces a non-negligible biased estimator in sonar applications. On the contrary, the performance of MLE based upon the exact model is compatible with the asymptotic performance given by the CRLB: its empirical covariance matrix is close to the bound and it is practically unbiased. The price is an augmentation of the computation time. Finally, in short favorable scenarios, the CRLB allows us to expect TMA results that are compatible with the operational exploitation of a multi-static system (provided the number of receivers is sufficient). As HDC sonar is becoming more and more popular [START_REF]OCEANS'15, Continuous Active Sonar session, MTS/IEEE Proceedings[END_REF], further studies should analyze the impact of drifting of receivers due to ocean currents and in GPS-denied areas. The contribution of bearing measurement should also be analyzed when using directive receivers in terms of duration to get a given target location accuracy compared to the case of frequency-only TMA.

APPENDIX

For convenience, hereafter we will use the notation 

  T T T T X V V 0 0 2 2   , 2 2 2 2 2 2 2 T X T T T X V V c c V c V              .                  T k k i T k i T T X V t t P V t P V ,           k i T T X k i T T k i T T X t P V t P V t P V    2 2 .                 k i k k i k i X t P t t P t P 2 2 .             2 2 2 2 2 2 2 2 T X k i k i X T T k i X V t P t P V c V c t P          . Let us define         2 2 2 2 ) ( k i T k i T T k i t P V c t P V t a    .           2 2 2 2 ) ( 2 1 ) ( k i X T k i T T X k i k i X t P V c t P V t a t a        .       2 2 2 2 2 ) ( ) ( ) ( T X k i k i X T k i T X V t a t a V c t a V c                                ) ( 2 2 2 2 2 2 2 2 2 2 2 2 2 k i T X k i T k T T k i T k T T X k i T k T T X t a V c t a V c t P V t a V c t P V t a V c t P V                 
Now, we are able to give the values of the first two gradients:

          . ) ( ) ( , 2 2 2 2 2 2 2 2 2 2 2 T X T k T T k T k T T X k X k X V V c t P V t a V c t P V t a X t                                               k T k T T X T T X k X t a V c t P V c V c V t 2 2 2 2 2 2 2 2 2  . Computation of     X X t t k k X , , 2 1      : First, we write     X X t t k k , , 2 1 

  



as the composition of the following two functions:

         . , , , 2 1 1 2 5 4 1 X X t t X g h Y X u X X t t Y X k k h k k g h g                                     R R R
We readily deduce that its gradient is equal to the product of two gradients, that is

        X g h X X t t X k k X       , , 2 1                  X X t t Y Y X k k h g , 2 .  with       4 2 2 , , I X t X X t t g k X k k X X                  and                          h u X u h h X Y ,
. So we get:

                            h u X u h X t X X t t X k X k k X , , , , 4 2 2 1 I          X u h X t u X u h X k X , , , 2         for   X t t u k k , 2              X u X t u X u X X t t X k X k k X , , , , , 1 2 1 2 1                  , for   X t t u k k , 2    .

  where Reflected s is the signal reflected by T, 2  is the propagation time of the targetreceiver range, and 2  accounts for the attenuation due to propagation. The signal Reflected s is the signal emitted by E,

Fig. 1 :

 1 Fig. 1: Standard scenario of the bistatic HDC sonar In the couple (E,T), the source is E; hence     c t r t 1 1  

  , R), T plays the role of the source; therefore,

  Fig. 2(a) and 2(b) depict   t f in blue,   t f 1 in green,   t f 2 in cyan, and

Fig. 2 (

 2 Fig. 2 (a): Frequency tracks with double inflexion CPA points (x axis: time in seconds, y axis: frequency in Hz).

Fig. 2 (

 2 Fig. 2 (b): Magnification of the frequency tracks; the dottedline is given by the output of the FFT. Note that in a radar bistatic system, the approximation (11) is acceptable thanks to the EM waves' speed (which is huge relative to the aircraft speed) unlike in the sonar domain.

Fig. 4 (

 4 Fig. 4 (a): Target's trajectory, initial positions estimated with exact model (blue dots) and with approximated model (red crosses), and the 90% confidence ellipse (magenta).

Fig. 4 (

 4 Fig. 4 (b): A magnification of the clouds of estimates of Fig. 4(a).

Fig. 5 (

 5 Fig. 5 (b): A magnification of the clouds of estimates of Fig. 5(a).

Fig. 6 (

 6 Fig. 6 (a): Target's trajectory and initial positions estimated with exact model (blue dots) and with approximated model (red crosses) in a tri-static configuration.

Fig. 6 (

 6 Fig. 6 (b): A magnification of the clouds of estimates of Fig. 6(a).

Fig. 7 (

 7 Fig. 7 (b): A magnification of the clouds of estimates of Fig.7(a). In Fig.7, a non-negligible bias, whose components are given in TableV, is visible when the approximated model is used. We note a reduction of the bias with an increasing number of receivers. However, the lesson to be drawn from these simulations is clear: the approximated model provides a biased estimator. For the HDC sonar, we hence recommend to use the correct model to construct the MLE, even if it requires more computational time. Table VI and Fig. 8 present results when simulation duration is reduced to 1 minute. TABLE VI: PERFORMANCES OF app X ˆ AND X ˆ AND MINIMAL

Fig. 8 (

 8 Fig. 8 (b): A magnification of the clouds of estimates of Fig. 8(a).

  Our analysis is based on 500 Monte-Carlo runs. In the

	2) Scenario 2 : TABLE II: PERFORMANCES OF app X X  2 X ˆAND X ˆ AND MINIMAL STANDARD DEVIATIONS	scenarios used:  E P 0  T 3500   measurements are time stamped at 1 Hz rate: (m) and   T R P 0 3500   t k	(m). The   t k    1 ,
	X	Bias Approximated	Exact	ˆ Approximated	Exact		CRLB	with choose a reasonable standard deviation of the frequency s t 1   . The frequency 0 f is equal to 1000 Hz. We
	-2500 m	model 61.04	model 0.7	model 17.17	model 17.19	17 .28	measurement: simulated using the correct model. The total duration is 1300s. 25 . 0  Hz. All the measurements are 
	7000 m	40.37	0.06	5.45	5.42	5.49	In this configuration, we consider three targets, whose
	0 m/s	0.09	0.0015	0.02	0.02	0.02	respective trajectories are defined by
	-10 m/s	0.004	0.0003	0.006	0.006	0.006	X	1		 	000 , 10		000 , 25	25	 T 0	(the target sails eastwards),
								X	2		 	500 , 2	000 , 7	0		 T 10	(the target sails southwards),
								and	X	3		 	500 , 2	000 , 14	15		 T 13	(the target sails towards
								south-east). For each target, the respective performances are
								presented in tables, whose first column is the empirical bias of
								app X ˆ, while the second column is the empirical bias of X ˆ. The
								empirical standard deviations of the components of app X ˆ	and
								X ˆ are written in the third and fourth columns. The minimal
								standard deviations (computed from the CRLB with the
								correct model) of the components of X are the elements of the
								fifth column. Figures depict the estimate sets in the plane
								(x,y): the correct estimated positions are represented by blue
								dots, whereas the approximated estimated positions are given
								by red crosses. The 90% confidence ellipse is plotted in
								magenta.		
										1) Scenario 1 :	X 	X	1
										TABLE I: PERFORMANCES OF app X ˆ AND X ˆ AND MINIMAL
																	STANDARD DEVIATIONS
										X					Bias Approximated	Exact	ˆ Approximated	Exact		CRLB
																	model	model	model	model
								-10000 m			11037	111.32	2671.4	2734.7 2510.5
								-25000 m			9112.7	103.33	2734.9	878.85	781
									25 m/s				3.77	0.14	1.67	0.23	0.15
										0 m/s					12.07	0.07	3.20	2.65	2.43

Fig.

3

: Target's trajectory, initial positions estimated with exact model (blue dots) and with approximated model (red crosses), and the 90% confidence ellipse (magenta). Note that the estimate clouds are croissant-shaped.

TABLE III

 III 

							14000 m	1145.9	4.52	34.67	113.9	113.04
							15 m/s	3.9	0.003	0.19	0.18	0.18
							-13 m/s	4	0.009	0.15	0.26	0.26
							Fig. 5(a): Target's trajectory and initial positions estimated
							with exact model (blue dots) and with approximated model
								(red crosses).
		: PERFORMANCES OF app X ˆAND X ˆ	AND MINIMAL
		STANDARD DEVIATIONS			
	X	Bias Approximated	Exact	ˆ Approximated	Exact		CRLB
		model	model	model	model		
	-2500 m	4626.4	5.97	205.77	255.37 254.16

TABLE IV :

 IV PERFORMANCES OF

				X ˆ	AND	X ˆ	AND MINIMAL
				app			
		STANDARD DEVIATIONS		
		Bias			ˆ	
	X	Approximated	Exact	Approximated	Exact		CRLB
		model	model	model		model
	-10000 m	1619.6	11.28	379 .12		452.41 449.98
	-25000 m	585.71	3.82	343.63		340.82 338.88
	25 m/s	0.55	0.001	0.21		0.21	0.20
	0 m/s	1.85	0.007	0.31		0.37	0.37

TABLE V :

 V PERFORMANCES OF

				X ˆ	AND	X ˆ	AND MINIMAL
				app			
		STANDARD DEVIATIONS		
		Bias			ˆ	
	X	Approximated	Exact	Approximated	Exact		CRLB
		model	model	model		model
	-10000 m	376.69	3.31	59.98		58.67	59.48
	-25000 m	186.52	11.06	198.56		198.11 197.18
	25 m/s	0.06	0.006		0.11		0.11	0.11
	0 m/s	0.81	0.002		0.07		0.06	0.06
	Fig. 7 (a): Target's trajectory and initial positions estimated
	with exact model (blue dots) and with approximated model
	(red crosses) in a quadri-static configuration.

  Table VI and Fig. 8 present results when simulation duration is reduced to 1 minute.

	TABLE VI: PERFORMANCES OF app X ˆ AND	X ˆ AND MINIMAL
		STANDARD DEVIATIONS			
	X	Bias Approximated	Exact	ˆ Approximated	Exact		CRLB
		model	model	model		model	
	-10000 m	389.44	5.72	199.3		230.8	230.1
	-25000 m	130.05	14.72	1340.4		1337.9 1338.3
	25 m/s	0.02	0.004	1.02		1.02	1.02
	0 m/s	0.78	0.004	0.16		0.2		0.2
	Fig. 8(a): Target's trajectory and initial positions estimated
	with exact model (blue dots) and with approximated model
		(red crosses) in quadri-static configuration.	

See https://en.wikipedia.org/wiki/History_of_radar