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Abstract—This paper presents a novel BOTMA based upon 

two types of bearing measurements: the angles of arrival of 

electromagnetic waves and the angles of arrival of acoustic 

waves. The difference of the propagation delays makes the 

problem observable even when the observer is motionless or non-

maneuvering. We construct a recursive estimator (using the 

extended Kalman filter) and a batch estimator (the maximum 

likelihood estimator) whose respective performances are 

evaluated by Monte-Carlo simulations, and compared to the 

Cramér-Rao lower bound. 
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I. INTRODUCTION 

The conventional bearings-only target motion analysis 
(BOTMA) has been widely addressed in the literature [1-4]. 
The target is assumed to be in constant velocity (CV) motion. 
A well-known weakness of it is the need for the platform to 
maneuver to render the problem observable [5-7]. But, 
maneuvering makes the observer indiscreet, which is awkward 
in underwater warfare. This is why constructing target motion 
analyses (TMA) which need no observer’s maneuver to insure 
observability of the target’s trajectory is of prime interest. A 
few solutions were proposed in the literature: for example, 
exploiting Doppler-shifted frequency measurement together 
with bearings makes the problem observable [8-10]. But 
bearings and frequencies TMA imposes a narrow band 
processing in the sonar systems. In some circumstances, a 
target performing particular maneuvers is observable in 
BOTMA [11-13], from a nonmaneuvering platform. 

Another promising way is to exploit the angles of arrival of 
two kinds of signals propagating with different speeds, such as 
the angles of “lines of sight” (in other words, electromagnetic 
waves – EMW - ) assumed to instantaneously propagate and 
the angles of “lines of sound” (or acoustic waves – AW-) 
whose propagation speed is much lower. A novel TMA using 
these angle measurements acquired by a unique platform 
allows passively estimating the trajectory of a target in CV 
motion without any maneuver of the observer. The bearings of 
the EMW and the bearings of the AW are named subsequently 
instantaneous bearings and delayed bearings. 

In FUSION’15, two independent papers addressed the 
problem of instantaneous-bearings-and-delayed-bearings-
TMA, called in [15] inverse triangulation TMA (ITTMA) by 
two different ways: In [14], the authors construct a recursive 
estimate using an Unscented Kalman Filter (UKF) for BOTMA 
(whose input is the instantaneous bearings), coupled with an 
Unscented Gauss-Helmert Filter (UGHF) whose role is to 
update the current estimate by the delayed bearings (called out 
of sequence measurements in [14] and [23]). The recursive 
estimation is done by the two filters: UKF with a 4-
dimensional state vector and UGHF with a 5-dimensional state 
vector. In [15], observability of the target’s trajectory is proven 
and the maximum likelihood estimate is proposed. 

In this study, we propose to exploit the analytic link 
between the propagation delay of the AW and the state vector 
defining the target’s trajectory. This allows us to use one filter 
(actually an extended Kalman filter – EKF -) with one sole 4-
dimensional state vector. We compute also the maximum 
likelihood estimator (MLE) by the Gauss-Newton routine. The 
respective empirical covariance matrices (evaluated by Monte-
Carlo simulations) of the recursive and batch estimators are 
compared to the Cramér-Rao lower bound (CRLB). 

Taking propagation delay into account was previously 
addressed: In [16-22], the time delay is on-line estimated to 
reduce the bias of the estimator of targets position. Most of the 
time, this time delay appears as a “drawback” of the 
propagation phenomena. In this paper, it helps to propose a 
“low-cost” unbiased estimation of the target trajectory. 

Our paper is composed of four main sections:  

Section II is devoted to the definition of our problem. We 
give the notations employed subsequently. 

In Section III, we give the asymptotic performance of any 
unbiased estimator through the Cramér-Rao lower bound 
expression.  

The estimations of the trajectory, by the maximum 
likelihood method, then by the extended Kalman filter, are 
presented in section IV.  

Section V is devoted to Monte-Carlo simulations, which 
allows us to compare the respective performance of the batch 
and the recursive estimation. 

A conclusion follows. 



II. PROBLEM STATEMENT AND NOTATION 

Consider a target (T) moving with a constant velocity (or 

CV motion) and a passive observer (O). In a Cartesian 

coordinate system, the position of the target at time t is 

denoted PT(t) = [xT(t) yT(t)]
T and its velocity is VT =

[ẋT ẏT]
T. The trajectory of the target obeys the following 

equation: PT(t) = PT(t
∗) + (t − t∗)VT, t∗ being an arbitrary 

reference time, and is entirely characterized by the chosen 

state vector X(t∗) = [xT(t
∗) yT(t

∗) ẋT ẏT]
T. The 

location of the observer at time t is denoted PO(t) =
[xO(t) yO(t)]

T. The position of the target relatively to the 

observer is defined as POT(t) = PT(t) − PO(t) =

r(t)[sin⁡θ(t) cos⁡θ(t)]T. During the scenario, the target and 

the observer are never located at the same place, i.e. POT(t) ≠
[0 0]T, ∀⁡t (see Fig. 1). 

The target and the observer are moving in a medium in 

which the electromagnetic waves (EMW) and the acoustic 

waves (AW) propagate. Delayed bearings are collected by a 

passive sonar, whose sampling period is about few seconds 

(typically 4 seconds), and instantaneous bearings are acquired 

by a passive radar (the sampling period is 1 second) or an 

optical device, for example a periscope (it is reasonable to 

assume that a bearing is measured every 2 minutes), for a 

submarine at surface. 

The propagation delay of the EMW is negligible, whereas 

that of the AW must be taken into consideration. So, from the 

viewpoint of the observer, the instantaneous bearing is equal 

to θ(t) = tan−1 (
xT(t)−xO(t)

yT(t)−yO(t)
) and the delayed bearing is 

θD(t) = tan−1 (
xT(t−τ(t))−xO(t)

yT(t−τ(t))−yO(t)
), where τ(t) is the propagation 

duration of the AW to reach the observer at time t. In other 

words, the observer detects at time t an AW emitted by the 

target at time t − τ(t). Hence, the propagation delay τ(t) 

satisfies the recursion τ(t) =
‖PT(t−τ(t))−PO(t)‖

c
, where c is the 

propagation speed of sound in the medium. It can be 

computed by the following expression, 

τ(t) = ⁡
√[VT

TPOT(t)]
2 + (c2 − ‖VT‖

2)‖POT(t)‖
2⁡ − VT

TPOT(t)

(c2 − ‖VT‖
2)

. 

Note that this expression is the generalized version of τ(t) 
given in [15].  

In order to emphasize the fact that θ(t) and θD(t) are 

completely defined by the state vector, we will denote them by 

θ(X(t∗), t) and θD(X(t
∗), t), respectively. 

At time 𝓊k (respectively 𝓋k), the observer acquires the 

measured angles θm(𝓊k), respectively θD,m(𝓋k), defined by 

θm(𝓊k) = θ(𝓊k) + ε(𝓊k) and θD,m(𝓋k) = θD(𝓋k) +

εD(𝓋k). 

ε(𝓊k) and εD(𝓋k) are the additive noises, assumed to be 

zero-mean and Gaussian. Their covariance matrices are 

respectively equal to 𝑑𝑖𝑎𝑔(σ2) and 𝑑𝑖𝑎𝑔(σD
2 ) (assumed to be 

known). Note that, in this paper, the delayed bearings are 

assumed to be unbiased. 

We aim to estimate the trajectory of the target from the two 

sets {θm(𝓊k), k = 1, 2, … , N} and {θD,m(𝓋k), k =

1, 2, … , ND}. 

In order to simplify the coming developments, we define 

the three following sets: 𝒰 ≜ {𝓊k, k = 1, 2, … , N} is the set of 

the acquisition time of instantaneous bearings; 𝒱 ≜
{𝓋k, k = 1, 2, … , ND} is the set of the acquisition time of 

delayed bearings; and 𝒯 ≜ 𝒰⋃𝒱. We sort the elements of 𝒯 

in the chronological order: 𝒯 = {t1, t2, … , tM}, with tk < tk+1. 

Then we define two subsets of {1, 2, … ,M} denoted I (as 

“instantaneous”) and D (as “delayed”) as follows: k ∈ I if the 

observer acquires a EMW angle at time tk; k ∈ D if the 

observer acquires a AW angle at time tk. 

Now, our problem can be rephrased as follows:  

“Estimate the state vector X(tℓ) from the set {θm(tk), k ∈

I}⋃{θD,m(tk), k ∈ D}”. Note that {θm(tk), k ∈

I}⁡⋂⁡{θD,m(tk), k ∈ D} is not necessarily empty. 

In the following section, we present the computation of the 

CRLB. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example of scenario 

III. ASYMPTOTIC PERFORMANCES 

The Cramér-Rao Lower Bound being the inverse of the 

Fisher information matrix (FIM), we develop the computation 

of the FIM for the state vector X(tℓ) ≜
[xT(tℓ) yT(tℓ) ẋT ẏT]

T (also denoted Xℓ subsequently) 

for ℓ = 1, 2, … given by the well-known formula: 

North 

Observer 

Target 

EMW 

AW 

PT(t) 

PO(t) 

PT(t − τ(t)) 

East 

θ(t) 

θD(t) 



F(Xℓ) = ∑
1

σ2
∇Xℓθ(Xℓ, tk)

k⁡∈⁡I

∇Xℓ
T θ(Xℓ, tk) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+ ∑
1

σD
2 ∇XℓθD(Xℓ, tk)

k⁡∈⁡D

∇Xℓ
T θD(Xℓ, tk) 

Since 

Xk = Φk,ℓ. Xℓ (1) 

with 

Φk,ℓ = [

1 0
0 1

tk − tℓ 0
0 tk − tℓ

0 0
0 0

1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0
0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1

], 

the computation of ∇Xℓθ(Xℓ, tk) and ∇XℓθD(Xℓ, tk) can be 

easily performed by 

∇Xℓθ(Xℓ, tk) = ∇XℓXk∇Xkθ(Xk, tk) = Φk,ℓ
T ∇Xkθ(Xk, tk) 

and 

∇XℓθD(Xℓ, tk) = ∇XℓXk∇XkθD(Xk, tk) = Φk,ℓ
T ∇XkθD(Xk, tk), 

where ∇Xkθ(Xk, tk) and ∇XkθD(Xk, tk) are detailed hereafter. 

From [3], we have 

∇Xkθ(Xk, tk) =
1

r(tk)
[cos⁡θ(tk) −sin⁡θ(tk) 0 0]T 

and the components of ∇XkθD(Xk, tk) are 

∂θD(tk)

∂xT(tk)
=

1

‖PT(tk − τ(tk)) − PO(tk)‖
{cosθD(tk) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+sinθD(tk) [
ẏTsinθD(tk) − ẋTcosθD(tk)

c + ẋTsinθD(tk) + ẏTcosθD(tk)
]} 

 

(2) 

∂θD(tk)

∂yT(tk)
=

1

‖PT(tk − τ(tk)) − PO(tk)‖
{−sinθD(tk) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+cosθD(tk) [
ẏTsinθD(tk) − ẋTcosθD(tk)

c + ẋTsinθD(tk) + ẏTcosθD(tk)
]} 

 

(3) 

 

∂θD(tk)

∂ẋT
= −τ(tk)

∂θD(tk)

∂xT(tk)
 (4) 

 

∂θD(tk)

∂ẏT
= −τ(tk)

∂θD(tk)

∂yT(tk)
⁡. (5) 

 

Finally, we get 

∇Xℓθ(Xℓ, tk) =
1

r(tk)

[
 
 
 

cos⁡θ(tk)

−sin⁡θ(tk)

(tk − tℓ)cos⁡θ(tk)

−(tk − tℓ)sin⁡θ(tk)]
 
 
 

 (6) 

and 

∇XℓθD(Xℓ, tk) =

[
 
 
 
 
 
 
 
 

∂θD(tk)

∂xT(tk)

∂θD(tk)

∂yT(tk)

(tk − tℓ − τ(tk))
∂θD(tk)

∂xT(tk)

(tk − tℓ − τ(tk))
∂θD(tk)

∂yT(tk)]
 
 
 
 
 
 
 
 

 (7) 

Note that for ℓ = 1, we find the result given in [15]. 

IV. ESTIMATION 

We propose two estimates of the target’s trajectory. First 

the maximum likelihood estimator of Xℓ, which is computed 

in a batch routine, and then a recursive estimator based on the 

extended Kalman filter (EKF). With the EKF, we estimate 

recursively Xk at each new measurement. 

A. Batch estimator: Maximum Likelihood Estimator (MLE) 

The maximum likelihood estimator (MLE), which is 

identical to the least squares estimator since the noises are 

assumed to be Gaussian, minimizes the following criterion 

C(Xℓ) = ∑
1

σ2
[θm(tk) − θ(Xℓ, tk)]

2

k⁡∈⁡I

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+ ∑
1

σD
2 [θD,m(tk) − θD(Xℓ, tk)]

2

k⁡∈⁡D

 

The Gauss-Newton (GN) routine is employed for this 

minimization. The Hessian is nothing else but F(Xℓ) during 

iterations. This estimator was presented in [15]. 

B. Recursive estimator: Extended Kalman Filter estimator 

(EKF) 

We develop hereafter the equations of the EKF for the state 

equation, deduce from (1), 

Xk = Φk,k−1Xk−1⁡⁡ 

coupled with a measurement equation which, depending on 

time tk is 1 or 2-dimensional: 

Yk = θm(⁡tk) = θ(Xk, tk) + ε(tk), if⁡⁡k ∈ I⁡only, 

or 

Yk = θD,m(⁡tk) = θD(Xk, tk) + εD(tk), if⁡⁡k ∈ D⁡only, 

or 



Yk = [
θ(Xk, tk)

θD(Xk, tk)
] + [

ε(tk)

εD(tk)
] , if⁡⁡k ∈ I ∩ D. 

Thus, whatever the case, the k-th measurement can be written 

as 

Y(tk) = ℋk(X(tk)) + ℯk⁡, 

with⁡⁡ℯk = ε(tk)⁡or⁡εD(tk)⁡or⁡ [
ε(tk)

εD(tk)
] 

In short, the state system is composed of a linear state 

equation and a nonlinear measurement equation whose 

dimension can change along the scenario. The EKF algorithm 

is given by the following equations: 

Xk/k−1 = Fk. Xk−1/k−1 

Pk/k−1 = Fk. Pk−1/k−1. Fk
T 

Kk = Pk/k−1. Hk
T[Hk. Pk/k−1. Hk

T + Rk]
−1

 

Xk/k = Xk/k−1 + Kk (Yk −ℋk(Xk/k−1)) 

Pk/k = (I4 − Kk. Hk). Pk/k−1. (I4 − Kk. Hk)
T + KkRkKk

T 

where Hk is the Jacobian of ℋk(. ) at Xk/k−1:  

Hk = ∇Xk
T ℋk(Xk/k−1) ⁡

=

{
 
 

 
 
∇Xk
T θ(Xk , tk)|Xk=Xk/k−1⁡⁡⁡⁡⁡if⁡⁡k ∈ I⁡only,

∇Xk
T θD(Xk, tk)|Xk=Xk/k−1⁡⁡if⁡⁡k ∈ D⁡only,

[
∇Xk
T θ(Xk, tk)

∇Xk
T θD(Xk, tk)

]

|Xk=Xk/k−1

if⁡⁡k ∈ I ∩ D.

 

where the gradients are given by (6) and (7), with l =k. 

V. NUMERICAL APPLICATION 

This section focuses on the study of the empirical 

performances of the MLE and EKF estimators on different 

scenarios. The following results are obtained with 500 Monte-

Carlo simulations. 

The GN routine is initialized with Xinit =

⁡rinit[sin(θm(t1)) cos(θm(t1)) 0 0]. 

And the EKF is initialized as follows: 

X0/0 =⁡Xinit⁡⁡⁡and⁡⁡⁡P0/0 =⁡

[
 
 
 
 
 
 
 
 
200002

12
200002

12

0

0

10

12
10

12]
 
 
 
 
 
 
 
 

 

where the initialized range rinit is arbitrary chosen. 

Hereafter, the MLE and the EKF algorithm are performed on 

6 different scenarios. Two types of scenarios are used in our 

study: long range scenarios, and short range scenarios. In long 

range scenarios, passive radar and passive sonar are mounted 

on the platform. The respective sampling periods of radar and 

sonar are Δt = 1s. and ΔtD = 4s. The respective standard 

deviations of the instantaneous bearings and delayed bearings 

are σ = 1° and  σD = 1°. In short range scenarios, passive 

radar is replaced by a periscope with Δt = 120s, and ⁡σ =
0.1°. The sound propagation speed is chosen to be equal to 

1500m/s. The observer changes its heading. Note that in all 

these scenarios, the initial position of the observer is PO(0) =
[0 0]T.  

The performances of the estimated state vector at final time 

obtained with the MLE and the EKF algorithm, as well, are 

given in tables. We compute the empirical biases and standard 

deviations of each estimator (denoted σ̂MLE and σ̂EKF) and the 

asymptotic performance given by the square root of the 

diagonal element of the CRLB (denoted σCRLB). Moreover, to 

quantify the interest of ITTMA, the asymptotic performance 

of the classical BOTMA (denoted σCRLB
BOTMA) are given in tables. 

For each scenario, four figures are plotted. Fig. (a) depicts the 

observer’s and the target’s trajectory. The letters “O” and “T” 

designate their respective initial positions; the 90% confidence 

ellipsoids from the CRLB are centered on the true target’s 

location at three different instants and the 500 MLE estimated 

positions at the same instants. On Fig (b), the 500 EKF 

outputs are plotted. Fig. (c) and Fig. (d) are the respective 

magnifications of Fig. (a) and Fig (b), around the end of the 

scenario. 

A. Scenario 1: Long range (passive sonar and passive 

radar) 

The duration of scenario 1 is 20 minutes (1200 seconds). 

During the first 200 seconds, the observer is in CV motion 

with a speed equal to 7m/s and a heading of 90°, then during 

400 seconds, it is in constant turn (CT) with a turn rate of 

−20°/min, and for the last 600 seconds it is anew in CV 

motion with a speed equal to 7m/s and a heading of −45°. 

The initial position of the target is PT(0) = [15 18]T(km); 

its speed is equal to 5 m/s and its heading is 150°. For the 

initialization, we chose rinit = 10 km. 

Fig. 2 depicts the 90% confidence ellipses at 400s, 800s, 
and 1200s, and the 500 estimated positions at the same 
instants. After the first 7 minutes, the cloud to the 500 MLE is 
within the confidence ellipses, unlike the EKF which appears 
biased. The correct performance of the MLE is maintained up 
to the end of the scenario. The EKF has to wait 13 minutes to 
behave properly, even though the computed estimators are not 
strictly efficient. Table I corroborates this fact. 

B. Scenario 2: Short range (passive sonar and periscope) 

Now, the duration of the scenario is 10 minutes (600s). 

During the first 100 seconds, the observer is in CV motion 

with a speed equal to 7m/s and a heading of 90°, then during 

400 seconds it is in CT with a turn rate of −20°/min, and for 

the last 100 seconds it returned in CV motion with a speed 

equal to 7m/s and a heading of −45°. The target starts from 



PT(0) = [4 6]T (km) with a speed equal to 5 m/s and a 

heading of 150°. For this scenario, we chose rinit = 10 km. 

Fig. 3 depicts the 90% confidence ellipses at 200s, 400s and 

600s and the 500 estimated positions at the same instants. 

Again, the MLE behaves accordingly to the theory for this 

scenario, where its efficiency is confirmed (see Table II). The 

EKF does not diverge (the cloud of estimates remains in a 

“reasonable” zone), but it is not efficient. Note that σCRLB
BOTMA is 

three times bigger than σCRLB. This improvement is due to the 

5 instantaneous bearing measurements only. 

C. Scenario 3: Long range (passive sonar and a passive 

radar) 

The trajectory of the observer is the same as in scenario 1. The 

target’s initial position is PT(0) = [15 18]T (km); its speed 

is equal to 5 m/s and its heading is −90°. We choose rinit =
30 km. 

As shown in Fig. 4, the MLE is practically unbiased (see 

Table III). The EKF is biased but its outputs are in the vicinity 

of the target’s trajectory. 

D. Scenario 4: Short range (passive sonar and periscope) 

The duration of the scenario and the observer’s trajectory are 

the same as scenario 2. Only the target’s trajectory changed. 

The target starts from PT(0) = [4 6]T (km) with a speed 

equal to 5 m/s and a heading of −90°. The GN routine and the 

EKF were initialized with rinit = 10 km. 

Fig. 5 depicts the 90% confidence ellipses at 200s, 400s, and 

600s, and the 500 estimated positions at the same instants. 

The EKF performs poorly whereas the MLE is quasi unbiased 

and its covariance matrix (not reported here) is very close to 

the CRLB. 

E. Scenario 5: Long range (passive sonar and a passive 

radar) 

This scenario is an extension of scenario 1; now its duration is 

30 minutes, and the observer makes a second change of 

heading:  20 minutes after the beginning, the observer starts its 

maneuver by a CT during 6min 40s with a turn rate of 

20°/min, then it finishes its route in a CV motion during 3min 

20s, and an heading of  90°.  

Fig. 6 shows the 90% confidence ellipsoids at 600s, 1200s, 

and 1800s, and the 500 estimated positions at the same 

instants. The MLE keeps its excellent performance, and the 

EKF, even if it is not efficient in a strict sense, behaves 

properly (see Table V). 

F. Scenario 6: Short range (passive sonar and periscope) 

This scenario is the prolongation of scenario 2: the target 

keeps its route, but the observer makes a second turn after 10 

mn: it starts a CT motion with turn rate of 20°/min, and after 

6min 40s, it returns in CV motion during 3min 20s. The total 

duration of scenario 6 is hence 20 minutes. 

The 500 estimated positions and the 90% confidence ellipses 

at 400s, 800s, and 1200s are depicted in Fig. 7. 

Fig. 7 shows that the EKF does not benefit from the additional 

maneuver, conversely to the MLE which keeps its efficiency. 

Table VI corroborates this assertion. 

 
Fig. 2 (a) 

 
Fig. 2 (b) 

 
Fig. 2 (c)  

Fig. 2 (d) 

Fig. 2. Scenario 1: observer’s and target’s trajectories, the three 90% 

confidence ellipse, the estimated positions. 

TABLE I.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 1. 

XM 
Bias 
MLE 

Bias 
EKF 

σ̂MLE σ̂EKF σCRLB σCRLB
BOTMA 

xT =
17998 

(m) 

0.1923 191.26 337.66 415.71 342.38 770.37 

yT =
12808 

(m) 

0.9215 46.34 158.84 202.28 161.52 367.51 

ẋT = 2.5 
(m/s) 

0.0030 0.4719 0.3059 0.2891 0.2985 0.6717 

ẏT =
−4.33 
(m/s) 

0.0052 0.7283 0.5510 0.5049 0.5463 1.2383 

 

 
Fig. 3 (a) 

 
Fig. 3 (b) 



 
Fig. 3 (c) 

 
Fig. 3 (d) 

Fig. 3. Scenario 2: observer’s and target’s trajectories, the three 90% 

confidence ellipses, the estimated positions. 

TABLE II.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 2. 

XM 
Bias 

MLE 

Bias 

EKF 
σ̂MLE σ̂EKF σCRLB σCRLB

BOTMA 

xT =
5490 (m) 

0.8812 178.44 110.78 259.79 111.61 356.99 

yT =
3419 (m) 

1.8935 101.44 67.13 154.14 68.00 189.94 

ẋT = 2.5 
(m/s) 

0.0027 0.5285 0.2279 0.1839 0.2208 0.4319 

ẏT =
−4.33 
(m/s) 

0.0070 0.0877 0.4804 0.5683 0.4670 1.2481 
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Fig. 4. Scenario 3: observer’s and target’s trajectories, the three 90% 

confidence ellipses, the estimated positions. 

 

TABLE III.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 3. 

XM 
Bias 

MLE 

Bias 

EKF 
σ̂MLE σ̂EKF σCRLB σCRLB

BOTMA 

xT =
9005 (m) 

6.82 735.98 492.39 251.91 489.70 1102.04 

yT =
18000 

(m) 

11.75 1082.3 728.35 381.70 725.39 1623.42 

ẋT = −5 
(m/s) 

0.0013 0.7742 0.6132 0.2334 0.6045 1.3613 

ẏT = 0 
(m/s) 

0.0058 1.0990 0.8789 0.3358 0.8672 1.9418 
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Fig. 5. Scenario 4: observer’s and target’s trajectories, the three 90% 

confidence ellipses, the estimated positions. 

TABLE IV.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 4. 

XM 
Bias 

MLE 

Bias 

EKF 
σ̂MLE σ̂EKF σCRLB σCRLB

BOTMA 

xT =
1020 (m) 

5.22 46.10 49.22 68.56 48.42 96.73 

yT =
6000 (m) 

66.81 627.98 558.04 647.13 546.55 897.54 

ẋT = −5 
(m/s) 

0.0280 0.2967 0.2360 0.2668 0.2297 0.3189 

ẏT = 0 
(m/s) 

0.0584 0.3725 0.5002 0.6650 0.4923 0.9184 
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Fig. 6. Scenario 5: observer’s and target’s trajectories, the three 90% 

confidence ellipses, the estimated positions. 

TABLE V.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 5. 

XM 
Bias 

MLE 

Bias 

EKF 
σ̂MLE σ̂EKF σCRLB σCRLB

BOTMA 

xT =
19498 

(m) 

1.92 152.40 252.66 413.99 255.10 570.02 

yT =
10210 

(m) 

2.67 59.92 79.28 146.24 81.01 183.17 

ẋT = 2.5 
(m/s) 

0.0046 0.1035 0.0931 0.2756 0.0967 0.2159 

ẏT =
−4.33 
(m/s) 

0.0057 0.0402 0.0995 0.3317 0.1007 0.2262 
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Fig. 7. Scenario 6: observer’s and target’s trajectories, the three 90% 

confidence ellipses, the estimated positions. 

 

TABLE VI.  PERFORMANCES OF THE MLE AND EKF 

ESTIMATORS IN SCENARIO 6. 

XM 
Bias 
MLE 

Bias 
EKF 

σ̂MLE σ̂EKF σCRLB σCRLB
BOTMA 

xT =
6990 (m) 

7.12 484.98 77.07 215.53 77.78 201.03 

yT = 821 
(m) 

0.18 14.91 11.43 19.73 11.41 21.45 

ẋT = 2.5 
(m/s) 

0.0041 0.3974 0.0391 0.1112 0.0400 0.1044 

ẏT =
−4.33 
(m/s) 

0.0052 0.2464 0.0702 0.1883 0.0695 0.1649 

 

VI. CONCLUSION 

In FUSION’15, we proposed a novel TMA, called inverse 
triangulation TMA, by exploiting the angles of electromagnetic 
wave’s arrival and of acoustic wave’s arrival. The key of 
inverse triangulation TMA is to take the propagation delay of 
the acoustic waves into account. This paper is the extension of 
this study: we considered a maneuvering platform and used the 
maximum likelihood estimator together with the extended 
Kalman filter, both in Cartesian coordinates. The MLE is 
definitively efficient for this problem. The Cartesian EKF 
returns estimators which are in the vicinity of the true state 
vector. However, strictly speaking, it is not efficient, and takes 
no benefit of a second observer’s maneuver. More subtly, its 
behavior depends on the sampling period of the so-called 
instantaneous bearings: it seems to be insensitive to these 
additional measurements when the sampling period is about 2 
minutes, even with very accurate bearings. The research effort 
must hence be focused upon the EKF, for instance in changing 
the coordinates systems (for example we could try the modified 
polar coordinates), or in changing the equation of the EKF by 
extending its linearization in second order. Another point 
merits to be studied: in real situations, the acoustic bearings 
can be biased due to propagation phenomena. This bias has to 
be taken into account. This is still under investigation. 
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