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Abstract. This note presents a descending method that allows us to classify

quotients of Reed-Muller codes of lenghth 128 under the action of the affine

general linear group.

1. introduction

Let F2 be the finite field of order 2. Let m be a positive integer. A mapping
from Fm

2 into F2 is called a Boolean function. Every Boolean function has a unique
algebraic reduced representation :

f(x1, x2, . . . , xm) = f(x) =
∑

S⊆{1,2,...,m}

aSXS , aS ∈ F2, XS(x) =
∏
s∈S

xs.

The degree of f is the maximal cardinality of S with aS = 1 in the algebraic form.
The valuation of f 6= 0, denoted by val(f), is the minimal cardinality of S for
which aS = 1. Conventionnally, val(0) is ∞. We denote by B(s, t,m) the space of
Boolean functions of valuation greater than or equal to s and of degree less than
or equal to t. Note that B(s, t,m) = {0} whenever s > t. The space B(0, t,m)
identifies with the Reed-Muller code RM(t,m). The Reed-Muller codes are nested
and B(s, t,m) is the representation of the quotient space RM(t,m)/RM(s− 1,m).
The affine general linear group of Fm

2 , denoted by agl(m, 2), acts naturally over
all these spaces. The number of classes of B(s, t,m), denoted by n(s, t,m), satisfies
a nice duality relation :

(1) n(s, t,m) = n(m− t,m− s,m).

X.-D. Hou gives a proof of the above relation in [3]. In the proof of Lemma 1,
we propose an alternative demonstration.

For the dimensions that we want to consider, all class numbers are very easy to
determine using Burnside’s Lemma and the theory of conjugacy classes of agl(m, 2),
see e.g. [4].

In general, such a class number is huge, but, when it is reasonably small, one
may consider to determine an orbit representative set that is a list of n(s, t,m)
Boolean functions, of degree less than or equal to t, and pairwise non affine equiv-
alent modulo RM(s− 1,m). As an example, the class number n(2, 6, 6) is 150357.
J. Maiorana in [5] describes a recursive algorithm to find the 150357 equivalence
classes.

More generally, the classification information of the space B(s, t,m) plays an
important role both in coding theory and cryptography. Indeed, the covering radii
of Reed-Muller codes are not generally known. The classification of B(s, t,m)

Date: december 2021.

1
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can be used to bound the covering radius of RM(s − 1,m) as in the paper [8].
These classifications are also used to study the cryptographic parameters of Boolean
functions.

This paper presents a procedure to provide classifications of Boolean functions
spaces for m = 7. Precisely, we compute orbit representative sets of B(s, t, 7), for
all parameters s ≤ t ≤ 7 such that n(s, t, 7) is less than 106.

Our approach gives complete classifications : not only sets of orbit representa-
tives, but also for each representative, a generator set of stabilizer group.

The computed data are available on the project page [2].

2. Boolean functions

A Boolean function f is a member of B(s, t,m) if and only if s ≤ val(f) and
deg(f) ≤ t. Denoting S̄ the complement set of S ⊆ {1, 2, . . . ,m}, the comple-
mentary transform

∑
S XS 7→

∑
S XS̄ maps B(s, t,m) onto B(m − t,m − s,m),

in particular, these spaces have the same dimension. The Reed-muller spaces are
nested :

(0)︷ ︸︸ ︷
RM(−1,m) ⊂ RM(0,m) ⊂ RM(1,m) ⊂ · · · ⊂ RM(m− 1,m) ⊂ RM(m,m)︸ ︷︷ ︸

B(m)

.

The quotient space RM(r,m)/RM(r − 1,m) is the space of forms of degree r,
identified with the space B(r, r,m) but we prefer to introduce a notation H(r,m),
its dimension is given by the binomial coefficient

(
m
r

)
. The dimension of B(s, t,m) is

equal to the sum of binomial coefficients
∑t

w=s

(
m
w

)
. It is easy to see that the weight

of a Boolean function is even if and only if its degree is not maximal, consequently
the orthogonal of RM(k,m) is RM(m−k−1,m), with respect to the scalar product
〈f, g〉 =

∑
x∈Fm

2
f(x)g(x).

Lemma 1 (duality). For all s, t such that s ≤ t ≤ m, B(m − t,m − s,m) is a
representation of B(s, t,m)∗, the dual of B(s, t,m). It means that for any form
φ ∈ B(s, t,m)∗ there exists one and only one g ∈ B(m − t,m − s,m) such that
ϕ(f) = 〈f, g〉, for all f ∈ B(s, t,m).

Proof. Note that the dimension of B(m − t,m − s,m) is precisely the dimension
of B(s, t,m). If 0 6= g ∈ B(m − t,m − s,m) then g 6∈ B(s, t,m)⊥. Indeed, con-
sider a monomial term XS of maximal degree in the algebraic representation of g.
The product XS̄g has degree m whence XS̄ is member of B(s, t,m) which is not
orthogonal to g. In other words, the space B(m − t,m − s,m) is a representation
of B(s, t,m)∗. �

The order of agl(m, 2) is 2m
∏m−1

i=0 (2m − 2i) ≈ 0.29 2m
2+m. The affine general

linear group acts naturally on the right over Boolean functions. The action of
s ∈ agl(m, 2) on a Boolean function f is f ◦ s. Note that the rank of this action
has doubly exponential growth with the parameter m. For m = 7, it is already
numerically impossible to list the ≈ 274 classes.

Two Boolean functions f and g in m variables are equivalent at level r if there
exists s ∈ agl(m, 2) such that deg(g + f ◦ s) ≤ r. We use the notations f ∼

r
g for

the equivalence at level r, and stabr
m(f), for the stabilizer of f at level r :



CLASSIFICATION OF BOOLEAN FUNCTIONS 3

(2) stabr
m(f) = {s ∈ agl(m, 2) | f ◦ s + f ∈ RM(r,m)}.

The Reed-Muller spaces are invariant under the action of agl(m, 2). Thus, the
affine general linear group acts over the B(s, t,m), the corresponding class number
n(s, t,m) is given by Burnside’s formula :

(3) |agl(m, 2)| × n(s, t,m) =
∑

s∈agl(m,2)

fixs,t
m (s) =

∑
s∈Γ

R(s) fixs,t
m (s).

where fixs,t
m (s) is the number of Boolean functions f of valuation greater than or

equal to s and degree less than or equal to t such that deg(f ◦ s + f) < s and that
is precisely the cardinality of the kernel of the endomorphism of B(s, t,m) defined
by f 7→ f ◦ s. In practice, the sum range Γ is set of representatives of conjugacy
classes of agl(m, 2), and R(s) the size of the conjugacy class of s, see book [4] for
the finite fields combinatoric details.

Lemma 2 (formula). For all s, t such that s ≤ t ≤ m,

n(s, t,m) = n(m− t,m− s,m)

Proof. Let us recall that the rank of a subgroup of the general linear group over a
finite space is the same that the dual group. For s ∈ agl(m, 2), the adjoint of the
automorphism f 7→ f ◦ s corresponds to the inverse of s, because

〈f ◦ s, g〉 =
∑
x∈Fm

2

f ◦ s(x)g(x) =
∑
x∈Fm

2

f(x)g ◦ s−1(x) = 〈f, g ◦ s−1〉.

The result follows using Burnside’s formula by observing∑
f,g

(−1)〈f◦s+f,g〉 = ]B(m− t,m− s,m)× fixs,t
m (s).

�

In this paper, by a classification at level r of degree k in m variables, we want
to consider a set of orbit representatives of B(r+ 1, k,m) under the right action of
agl(m, 2), and for each orbit representative f , the generator system of stabr+1

m (f).
It is important to note that at level r, we calculate modulo RM(r,m), and we
consider polynomials whose valuations are strictly greater than r.

Recall that agl(m, 2) can be generated by three following transformations : the
shift operator S : v 7→ (vm−1, . . . , v1, vm), the transvection T : v 7→ (vm, . . . , v2, v1 +
v2) and the translation U : v 7→ v + (0, . . . , 0, 1).

In next section, we detail the procedure that we used to build a classification at
level r − 1 from a classification at level r. Starting at level m, there is only one
orbit {0} stabilized by full group agl(m, 2) = 〈S, T, U〉. One can start from this
classification at level m to determine the classifications at level m− 1, level m− 2
etc.

3. Descending procedure

In order to deduce a classification at level r−1 from a classification a level r, we
have to consider some “boundary actions” on H(r,m) the space of homogeneous
forms of degree r. The stabilizer of f at level r induces an action on homogeneous
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polynomials of degree r by mapping u ∈ H(r,m) to u ◦ s + fs where fs is the
boundary form f ◦ s + f mod RM(r − 1,m).

Lemma 3 (boundary). Let R be a set of orbit representatives of degree k at level
r. For each f ∈ R, U(f) denotes a set of orbit representatives of H(r,m) under
the boundary action of stabr

m(f). We obtain that {f + u | f ∈ R, u ∈ U(f)} is a
set of orbit representatives with same degree at level r − 1.

Proof. We start by showing the elements of this set are not equivalent at level r−1.
Indeed, let f ′ and f be in R, and two forms u′ ∈ U(f ′) and u ∈ U(f) such that
f + u ∼

r−1
f ′ + u′. There exists s ∈ agl(m, 2) such that f ′ + u′ ≡ (f + u) ◦ s

mod RM(r − 1,m). Reducing more, we obtain f ′ ≡ f ◦ s mod RM(r,m); so
that f ′ and f are equivalent at level r, thus f ′ = f . The boundary action of
s ∈ stabr(f) sends u to u′ and finally u′ = u. Now, we prove that the set represents
all polynomials at level r − 1. Indeed, let g ∈ B(r − 1, k,m) there exists a pair
(t, f) ∈ agl(m, 2) × R such that g ◦ t ≡ f mod RM(r,m) whence g ◦ t ≡ f + v
mod RM(r − 1,m) where v is a form of degree r, and there is a boundary action
s ∈ stabr

m(f) that sends v to some u ∈ U(f) whence g ◦ ts ≡ (f + v) ◦ s ≡ f + u
mod RM(r − 1,m). �

Considering the right action of a group G over a set U , we denote by u • s the
action of s ∈ G on u ∈ U , Ou the orbit of u, Su the stabilizer of u and ou the order
of Su.

Lemma 4 (class formula). If G is a finite group acting on a finite set U then the
size of the orbit of an element u ∈ U is equal to |G|/ou where ou is the order of the
stabilizer Su of u.

Proof. There is a bijection from G/Su onto Ou the orbit of u. �

Lemma 5 (Schreier). Let L be a set of generators of a finite group G right acting
on a finite set U . Let Ou be the orbit of some element u ∈ U . If R : Ou → G is a
map such that u •R(x) = x for all x ∈ Ou then {R(x)λR(x •λ)−1 | λ ∈ L, x ∈ Ou}
spans the stabilizer Su of u.

Proof. See [7]. �

Knowing the value ou, one can build a generator set of its stablizer Su applying
Schreier’s Lemma. We implement this idea in the algorithm generatorSet where
∗ denotes the law group and • denotes the action.

Now, we describe our descending procedure based on Lemma 3 and Lemma 5
to construct a set of orbit representatives at level r − 1 from level r. In view of
dimension of forms space H(r,m) and for save memory space, we proceed in two
phases :

(1) For each representative f at level r, we use a classical algorithm to enumer-
ate an orbit representatives set of H(r,m) under the action of stabr

m(f).
For each representative u, we obtain the orbit Ou, and by Lemma 4, the
order ou of stabr−1

m (f + u) is equal to ]stabr
m(f)/]Ou.

(2) For each representative f at level r, let L be a generator set of stabr
m(f).

For each pair (u, ou), obtained in (1), we apply generatorSet(u, L, ou)
to construct a set of generators of stabr−1

m (f + u).
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Listing 1. Construction of a generator set of Su.

1 Algorithm generatorSet( u , L, ou )
2 { // return a generator set of the stabilizer of u
3 // under the action of the group generated by L
4 // knowing its order ou
5 S ←∅
6 push( u )
7 R [ u ] ← id
8 Y ←{ u }
9 while ( order( <S> ) < ou) {

10 pop( x )
11 for λ ∈ L {
12 y ← x • λ
13 if y 6∈ Y {
14 push(y)
15 R[ y ] ←R[ x ] ∗ λ
16 Y← Y ∪ {y}
17 } else {
18 s ← R[x] ∗ λ ∗ inverse ( R[ y ] )
19 if ( s not in <S> )
20 S ←S ∪ { s }
21 }
22 }
23 return S;
24 }

Table 1. Class numbers n(s, t, 7).

s\t 1 2 3 4 5 6 7

0 3 12 3486 1013.5 1019.8 1021.9 1022.2

1 2 8 1890 1013.1 1019.5 1021.6 1021.9

2 4 179 1011.0 1017.3 1019.5 1019.8

3 12 68443 1011.0 1013.1 1013.5

4 12 179 1890 3486
5 4 8 12
6 2 3
7 2

4. application

An alternative way to build a list of orbit representatives consists to use in-
variants. Success for invariant based approach is not guaranteed for two reasons :
small orbits are hidden and difficult to detect, and the invariants used may not
be discriminating enough ! Moreover, invariant approach does not give orbit sizes
and even less the generator set of stabilizers. The invariant approach in [6] failed
to find a list of representatives of B(2, 4, 7). In that case, the number of orbits is
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n(2, 4, 7) = 68433 and using invariants, the authors got 68095 orbits missing 338
orbits.

Our implementation in C language of the descending procedure, without any
parallelization, builds the full classification of B(2, 6, 6) in 15 secondes. It find the
classification of B(2, 4, 7) in three days and require about 50GB of memory. The
values of n(s, t, 7) for 0 ≤ s ≤ t ≤ 7 are listed in Table . For all parameters
0 ≤ s ≤ t ≤ 7 such that n(s, t, 7) < 106, the descending procedure classifies
B(s, t, 7), it computes for each orbit, a representative and also a generator sets of
the corresponding stabilizer. All the numerical data are available in project page.

On the side of coding theory, writting this note, we learned that the covering
radius of RM(3, 7) has just been determined in the paper [1]. At the same time, we
used the classification of B(4, 7, 7) to obtain the value 20 for the covering radius.

5. conclusion

Our descending procedure successfully classifies Boolean functions in 7 variables.
The dimension of form spaces is an obstruction to apply this approach in dimen-
sion 8. Perhaps, it is possible to mix the descending procedure and the recursive
approach of Maiorana to obtain classification results for higher dimension.
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