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INFLUENCE OF A NONLINEAR DEGENERATE DIFFUSION ON AN
ADVECTION-DIFFUSION EQUATION IN A DIFFUSE INTERFACE

FRAMEWORK ∗

Gloria Faccanoni1 and Cédric Galusinski1

Abstract. This work is motivated by the modelling a liquid-vapour flows with phase transition de-
scribing the evolution of the coolant within an heat exchanger (e.g. the core of a Pressurized Water
Reactor). We investigate an advection-diffusion equation with a degenerate and nonlinear diffusion
coefficient. The degeneracy corresponds to a liquid-vapor mixture in the original model whereas the
diffusion coefficient is non-degenerate in the pure phase cases. We focus on the influence of the diffusion
coefficient on a simple 1D configuration for which some analytical computations can be done, leading
to a surprising behavior of the phase transition with respect to the diffusion.

Keywords: phase change, Stefan problem, nonlinear degenerate diffusion.

1. Context
A heat exchanger is a device that facilitates the process of heat exchange between two fluids that are at

different temperatures. Heat exchangers are used in many engineering applications, such as refrigeration,
heating and air-conditioning systems, power plants, chemical processing systems, automobile radiators, and
waste heat recovery units. Nuclear core of a pressurized water reactor is an example of heat exchangers.

In some applications, such as the flow in nuclear reactor cores, convection is characterized by a low Mach
number, where the convective velocities are much slower than the speed of sound in the fluid. This has promoted
the development of so-called low Mach number models, which filter the sound waves. In the context of pressurized
water reactor cores, an asymptotic low Mach number model, called lmnc (for Low Mach Nuclear Core), has
been derived and investigated in a series of papers [1, 2, 4, 5, 7–9]. The model was derived through an asymptotic
expansion performed in the compressible Navier-Stokes equations with an energy source term. It consists of a
transport equation upon a thermodynamic variable (here the total enthalpy), of a divergence constraint upon
the velocity (with a nonlinear coupling source term which underlines the dilatation property of the flow) and
of the momentum equation. The fluid is described by a single equation of state taking into account the phase
transition by supposing that, when both vapour and liquid phases are present, they have the same pressure,
temperature and chemical potential. The equation of state is piecewise defined with respect to the enthalpy
identifying a liquid phase, a gas phase and a mixture of them. The thermal diffusion degenerates in the mixture
region.

In the present paper we are interested in studying the influence of the thermal diffusion.
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Figure 1. The heat exchanger configuration

1.1. A heat exchanger model
For some bounded domain Ω ⊂ R3, the Navier-Stokes-Fourier system with source terms in a 3D conservative

formulation reads 
∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = ρg + ∇ · σ(u),
∂t(ρh) + ∇ · (ρhu) = Φ + ∇ · (ω∇T ) + σ(u) : ∇u + ∂tp + u · ∇p.

(1)

The unknows are the velocity field (t, x) 7→ u(t, x), the total enthalpy (t, x) 7→ h(t, x) and the pressure (t, x) 7→
p(t, x). The specific density ρ and the temperature T are related to the enthalpy h and the pressure p through
an equation of state. The heat conductivity ω, assumed to be constant and isotropic for each phase, is also
related to the enthalpy h and the pressure p. The power density (t, x) 7→ Φ(t, x) ≥ 0 is a given function of
time and space modelling the heating of the coolant fluid (e.g. due to the fission reactions in the nuclear core).
Finally, g is the gravity field and σ(u) models viscous effects.

In a low Mach number regime (i.e. when the speed of fluid is much smaller than the speed of sound), an
asymptotic expansions with respect to the Mach number can be applied to the compressible model, and this
leads to a simpler model where the acoustic waves are filtered out. The “original” pressure p is decomposed in
two pressure fields p(t, x) = p∗ + p̄(t, x), where p∗ is the reference state pressure (that is an average pressure
constant in time and space) and p̄ is the perturbational pressure (often called “dynamic pressure”). For low
Mach number flows, an asymptotic analysis shows that p̄(t, x)/p(t, x) = O(M2), where M is the Mach number.
We can thus approximate p(t, x) by p∗ in the computation of thermodynamics quantities and we obtain the
so-called LMNC model [1, 4, 8], that can be written as

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p̄ = ρg + ∇ · σ(u),
∂t(ρh) + ∇ · (ρhu) = Φ + ∇ · (ω∇T ) + σ(u) : ∇u.

(2)

In this system the unknows are the velocity field u, the enthalpy h and the perturbational pressure (t, x) 7→
p̄(t, x). The specific density ρ and the temperature T are linked, by an equation of state, to the enthalpy h and
to the constant given thermodynamic pressure p∗.

In the following the power density Φ is chosen constant and positive. We also neglect the viscous terms.

1.2. Diffusion term with phase transition
The fluid can be in liquid phase ℓ, vapour phase g or a mixture of them m.
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Figure 2. Temperature T as a function of the enthalpy h at a constant pressure p∗

Pure phase κ ∈ {ℓ, g}: We consider each phase κ as a compressible fluid characterized by its thermody-
namic properties, i.e. each phase is governed by a given (complete) equation of state (EoS), so that we
can define the temperature (h, p) 7→ Tκ(h, p) as function of the enthalpy h and the pressure p. We can
also define (T, p) 7→ hκ(T, p).

Mixture κ = m: The mixture is supposed at saturation: when phases coexist they have the same pressure
p, the same temperature T and the same chemical potential µ. Let us denote by T s(p) the solution
of the equation µℓ(T, p) = µg(T, p) (the so called temperature at saturation). We can then define
hs

κ(p) def= hκ(T s(p), p) the enthalpy of the phase κ at saturation.
Global equation of state: At any given pressure p, the fluid is in liquid phase if h ≤ hs

ℓ(p), in vapor
phase if h ≥ hs

g(p) and a mixture at saturation if hs
ℓ(p) < h < hs

g(p). Thus the global EoS is piecewise
defined w.r.t. hs

κ(p). In particular for the temperature we have (see Figure 2)

(h, p) 7→ T (h, p) =


Tℓ(h, p), if h ≤ hs

ℓ(p),
Tm(h, p) = T s(p), if hs

ℓ(p) < h < hs
g(p),

Tg(h, p), if h ≥ hs
g(p).

Since the temperature is a function of the enthalpy h and the (thermodynamic) pressure p, the gradient of
the temperature can be written as

∇T (h) = ∂T

∂h

∣∣∣∣
p

∇h + ∂T

∂p

∣∣∣∣
h

∇p.

In the lmnc model, the thermodynamic quantities are evaluated at p = p∗, which is constant. Thus, from now
letting drop the dependency upon p∗, the diffusion term can be written as

ω(h)∇T (h) =


λℓ∇h, if h ≤ hs

ℓ ,

0, if hs
ℓ(p∗) < h < hs

g,

λg∇h, if h ≥ hs
g,

where λκ
def= ωκ/cp,κ for κ = ℓ or g with ωκ the heat conductivity (assumed to be constant and isotropic for each

pure phase κ) and cp,κ
def= ∂h

∂T

∣∣
p

the isobar heat capacity of the pure phase κ. We note that if the open domain
of the mixture is non-empty, a zero diffusion coefficient can be set in this region.

Let us denote

λ(h) def=


λℓ if h ≤ hs

ℓ ,

λm if hs
ℓ < h < hs

g,

λg if h ≥ hs
g.

(3)
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By defining λm = 0 and by virtue of (2), with (3), the obtained equation on enthalpy comes down to

∂t(ρh) − ∇ · (λ(h)∇h) + ∇ · (ρhu) = Φ + σ(u) : ∇u.

It differs strongly on the enthalpy equation written in [13] where the transition liquid-gas is forced at a sharp
interface by the addition of a singular source term and a non-degeneracy of the thermal diffusion. The generality
of the model proposed here is that the liquid-gas transition can also take place through a sharp interface or
through a mixing region (in a diffuse interface framework). In the following, we will see that both can occur
and when the liquid-gas transition is a sharp interface, our enthalpy solution coincides with that of the Stefan
models written in temperature [12] or enthalpy [13]. This is the main point of this paper and an analytic
solution, derived in the 1D steady-state case in the following section, shows this richness of the phase transition.

2. Steady-state model
In this section, we focus on the steady-state solution, i.e. we seek for h, u and p̄ solution in R3

+ of
∇ · (ρu) = 0,

∇ · (ρu ⊗ u) + ∇p̄ = ρg,

∇ · (ρhu) = Φ + ∇ · (λ(h)∇h).

In the unidimensional case, the first and last equations can be written as{
∂y(ρv) = 0,

∂y(ρhv) = Φ + ∂y(λ(h)∂yh)
in [0, +∞) (4)

with ρ a function of h. To model the configuration described in the Figure 1, the system is closed by the
Dirichlet boundary condition corresponding to an inlet condition: the inlet enthalpy h(0) = he < hs

ℓ and the
inlet flow rate (ρv)(0) = De. Then the flow rate is constant on the domain:

(ρv)(y) = De for all y ∈ R+. (5)

In order to focus on a physically relevant solution, we assume that lim
y→∞

∂y(λ(h)∂yh) = 0 so that, thanks to (4),

lim
y→∞

∂yh(y) = Φ
De

.

We are thus interested in y 7→ h(y) solution of the following non-linear strongly degenerate convection-
diffusion problem:

Deh′ − (λ(h)h′)′ = Φ in R+ (6)
with

• Φ and De two strictly positive constants,
• h 7→ λ(h) the degenerate diffusion defined in (3),
• the two boundary conditions{

h(0) = he < hs
ℓ [inlet Dirichlet boundary condition],

lim
y→∞

h′(y) = Φ
De

[asymptotic behaviour]. (7)

To better understand the role of each parameter, in the following we will consider three cases for the three
constant values λℓ, λm and λg defined in (3):
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Figure 3. Steady solution without diffusion

(1) λℓ = λm = λg = 0 (model without diffusion)
(2) λℓ, λm, λg > 0 (model with positive diffusion)
(3) λm = 0 and λℓ, λg > 0 (model with a degenerate diffusion)

In the last case, which corresponds to the phase transition model, two cases have to be considered. Indeed, it
will be seen that the mixture region can disappear for a sufficiently large gas diffusion coefficient λg.

2.1. Steady solution without diffusion
Proposition 2.1 (Steady solution without diffusion). When λℓ = λm = λg = 0, the steady enthalpy solution
of (6)-(7) is

h(y) = he + Φ
De

y. (8)

Proof. Without diffusion we have to solve Deh′(y) = Φ with h(0) = he < hs
ℓ . The solution is thus h(y) =

he + yΦ/De. □

Let us denote xs
ℓ (resp. xs

g) the liquid/mixture transition (resp. mixture/gas) without diffusion (see Figure 3).
The fluid is in pure liquid phase for y ≤ xs

ℓ , in pure vapour phase for y ≥ xs
g and a mixture at saturation if

xs
ℓ < y < xs

g where

xs
ℓ = hs

ℓ − he

Φ
De

, xs
g =

hs
g − he

Φ
De

. (9)

2.2. Steady solution with a strictly positive diffusion
Without degeneracy of diffusion, the unique solution can be explicited as follows.

Proposition 2.2 (Steady solution with a positive diffusion). If λ(h), defined in (3), is piecewise positive
constant for all h, the steady enthalpy solution of (6)-(7) is

h(y) =



hℓ(y) def= C1 + Φ
De

y + C2 exp
(

y

λℓ/De

)
if y ≤ ys

ℓ

hm(y) def= C3 + Φ
De

y + C4 exp
(

y

λm/De

)
if ys

ℓ ≤ y < ys
g

hg(y) def= hs
g + Φ

De
(y − ys

g) if y ≥ ys
g

(10)
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where the constants C1, C2, C3, C4, depending on ys
ℓ and ys

g, are

C1 =
heLs

ℓ + Φ
De

(ys
ℓ − 1)

Ls
ℓ − 1 , C2 = he − C1, Ls

ℓ = exp
(

ys
ℓ

λℓ/De

)

C3 =

(
Φ

De
ys

ℓ − hs
ℓ

)
Ms

g −
(

Φ
De

ys
g − hs

g

)
Ms

ℓ

Ms
ℓ − Ms

g

, C4 =

(
Φ

De
ys

g − hs
g

)
−

(
Φ

De
ys

ℓ − hs
ℓ

)
Ms

ℓ − Ms
g

, Ms
κ = exp

(
ys

κ

λm/De

)
,

for κ = ℓ or g and ys
ℓ and ys

g satisfies the continuity flux{
λℓh

′
ℓ(ys

ℓ ) = λmh′
m(ys

ℓ ),
λmh′

m(ys
g) = λgh′

g(ys
g).

(11)

Proof. The non-degenerate diffusion, i.e. λ(h) > 0, leads to smooth solutions in the sense that discontinuities
can not occur since order one distributions generated by the diffusive term and discontinuous solutions can not
be compensated by order zero distribution. Furthermore, for continuous solutions, the transport term is then a
diffuse measure leading to a continuous diffusion flux. Then, the continuous solution induces a mixture region
and satisfies the flux continuity (11).

Due to the growth of the steady state solution (Φ and De are strictly positive), three regions, liquid, mixture,
gas, are juxtaposed from low to high y values. On each region, an explicit solution solves the equation (6),

h(y) =



hℓ(y) def= C1 + Φ
De

y + C2 exp
(

y
λℓ/De

)
if y ≤ ys

ℓ

hm(y) def= C3 + Φ
De

y + C4 exp
(

y
λm/De

)
if ys

ℓ ≤ y < ys
g

hg(y) def= C5 + Φ
De

y + C6 exp
(

y
λg/De

)
if y ≥ ys

g

(12)

where the unknows C1, C2, C3, C4, C5, C6, ys
ℓ , ys

g have to satisfy
• the enthalpy continuity conditions at inlet and transition points:

hℓ(0) = he, hℓ(ys
ℓ ) = hs

ℓ , (13)
hm(ys

ℓ ) = hs
ℓ , hm(ys

g) = hs
g, (14)

hg(ys
g) = hs

g, (15)

• the flux continuity conditions at transition points:

λℓh
′
ℓ(ys

ℓ ) = λmh′
m(ys

ℓ ), λmh′
m(ys

g) = λgh′
g(ys

g), (16)

• the asymptotic behaviour

lim
y→∞

h′
g(y) = Φ

De
. (17)

The conditions (13), (14), (15) and (17) allow to define C1 to C6 as functions of the transition points ys
ℓ and

ys
g. These points are thus implicitly defined by (16) and finally we obtain the solution. We note that the

transparent boundary condition (17) implies C6 = 0 so that y 7→ hg(y) is linear and compatible with the
semi-infinite domain. Moreover, although y 7→ h′

g(y) does not involve λg, the flux continuity (16) does. □
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(a) λg = De

(b) λg = 2De

(c) λg = 4De

Figure 4. Non degenerate diffusion for all h. Influence of λg.
Common parameters: Φ = De, 2λℓ = De, 10λm = De
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The Figure 4 shows the graph of y 7→ h(y) with λm > 0, that is a non-degenerate artificial diffusion in
the mixture region, leading to a continuous solution. Depending on the increasing ratio λg/De when other
parameters are fixed, the mixture region reduces and is pushed on the left. A stiffer solution appears at the gas
transition. On the last plot (Figure 4c), the mixing region is very sharp and is not included in the large mixing
region occurring without diffusion in the whole phases.

The first plot of the Figure 5 is the one of the Figure 4a. In the next figures is plotted a reduced diffusion
coefficient λm. It is then exhibited the convergence of the enthalpy as λm goes to zero. A discontinuous solution
is suggested at the limit. It occurs at the transition to the gas phase. For such diffusions in the liquid and gas
phases, the mixture region is slightly affected by the decreasing diffusion λm and remains at the limit.

We will see in the following section that, when the diffusion is allowed to degenerate, i.e. the diffusive coeffi-
cient λ(h) vanishes for values of h in the mixture region, solutions are not necessarily smooth and discontinuous
weak solutions must be sought.

2.3. Steady solution with degenerate diffusion
The degenerate diffusion can lead to a jump in the diffusion flux at phase transition. For example, as the

enthalpy flux is zero in the mixture region, a flux diffusion jump occurs at the interface with the mixture if the
space derivative of the enthalpy is not zero at this transition in the liquid (or gas) phase. A Dirac measure
follows and has to be compensated by an other Dirac measure in the transport term. A discontinuous solution
is then necessary. Due to the growth of the steady state solution (Φ and De are positive) and to the presence
of the liquid phase at inlet, a liquid phase is present for low y values, then follows a transition which can
be liquid-mixture (followed by the transition mixture-gas) or liquid-gas. The two possible cases are presented
below.

2.3.1. Case I: Liquid/mixture/gas
The solution with mixture is possible for a sufficiently low ratio λg

De

Φ
De

and is explicited in the following
proposition.

Proposition 2.3 (Steady solution with degenerate diffusion: liquid/mixture/gas case). For all λℓ > 0, if

λg

De

Φ
De

< hs
g − hs

ℓ (18)

the mixture zone is present and the solution of (6)-(7) satisfies

h(y) =



hℓ(y) def= he + Φ
De

y + Φ
De

λℓ

De

[
1 − exp

(
y

λℓ/De

)]
exp

(
−ys

ℓ

λℓ/De

)
if y ≤ ys

ℓ

hm(y) def= hs
ℓ + Φ

De
(y − ys

ℓ ) if ys
ℓ ≤ y < ys

g

hg(y) def= hs
g + Φ

De
(y − ys

g) if y ≥ ys
g

(19)

where
• the position ys

ℓ separating the liquid phase to the mixture phase is implicitly defined by hℓ(ys
ℓ ) = hs

ℓ ;
• the position ys

g separating the mixture phase and the gas phase is computed w.r.t. ys
ℓ by ys

g = ys
ℓ +

De

Φ (hs
g − hs

ℓ) − λg

De
.
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(a) λm
De

= 0.1

(b) λm
De

= 0.025

(c) λm
De

= 0.0125

Figure 5. Non degenerate diffusion for all h. Convergence of λm → 0.
Common parameters: Φ = De, 2λℓ = De, λg = De
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Proof. As for the nondegenrate case, on each phase or mixture, the integration of the solution gives

h(y) =



hℓ(y) def= C1 + Φ
De

y + C2 exp
(

y

λℓ/De

)
if y ≤ ys

ℓ ,

hm(y) def= C3 + Φ
De

(y − ys
ℓ ) if ys

ℓ ≤ y < ys
g,

hg(y) def= C4 + Φ
De

(y − ys
g) + C5 exp

(
y

λg/De

)
if y ≥ ys

g.

(20)

The five constants C1 · · · C5 have to be determine and a particular choice will be made to define a unique viscosity
solution. Searching a solution of (6) with mixture, the transition liquid-mixture induces a free dissipative flux
in the mixture. A positive jump on dissipative flux can not be compensated by the enthalpy jump on the
transport term since the enthalpy is increasing. As a matter of fact, if we denote JhK the enthalpy jump at the
liquid-mixture interface, the jump relation of (6) leads to

DeJhK − 0 × h′(ys,+
ℓ ) + λℓh

′(ys,−
ℓ ) = 0,

that is
λℓh

′(ys,−
ℓ ) = −DeJhK.

Since y 7→ h(y) has to be increasing, we should have JhK ≤ 0. Hence, in the present case, the only possibility
is to have both JhK = 0 and h′(ys,−

ℓ ) = 0. The inlet Dirichlet boundary condition and the Dirichlet condition
h(ys

ℓ ) = hs
ℓ define the constants C1 and C2 parametrized with respect to ys

ℓ . Then, the additional Neumann
boundary condition at ys

ℓ defines implicitly the unique value of ys
ℓ , C1 and C2, that is the unique solution in

the known liquid phase.
The expressions of the solution in the mixture region follow by the continuity of the enthalpy at the interface

with liquid, thus C3 = hs
ℓ . Furthermore, since C5 = 0 by virtue of the asymptotic behavior (7),

hg(y) = C4 + Φ
De

(y − ys
g).

The difficulty is then to define the transition point ys
g and the constant C4. The jump relation at this point

is obtained in the same way as for the point ys
ℓ , but this time, the two jumps can compensate each other:

DeJhK − λgh′(ys,+
g ) + 0 × h′(ys,−

g ) = 0,

that is
JhK = λg

De

Φ
De

,

which has to be lower than the maximal gap hs
g − hs

ℓ .
There is an infinity of solutions to such a problem in the sense of distribution. The transition ys

g separating
enthalpy lower than hs

g to upper can cover an interval, that is,

hg(ys
g) ∈

[
hs

g, hs
g + λg

De

Φ
De

[
.

Thus,
hm(ys

g) = hg(ys
g) − JhK = hg(ys

g) − λg

De

Φ
De

.

In order to define an unique solution, we choose a solution corresponding to the smallest mixture region,
that is with the smallest value of enthalpy hg(ys

g) = C4 = hs
g in the gas region at the transition. The reader
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can convince himself (see Figure 5) that this choice corresponds to the viscosity solution by studying the limit
of the viscous solution obtained in Proposition 2.2. This implies that

hm(ys
g) = hs

g − λg

De

Φ
De

and the position ys
g follows

ys
g = ys

ℓ + De

Φ (hs
g − hs

ℓ) − λg

De
.

□

Remark 2.4. Gas diffusion reduces the mixture region for steady solution since

(ys
g − ys

ℓ ) = (xs
g − xs

ℓ) − λg

De

where xs
κ are the transition points without diffusion defined in (9). We remark also that ys

ℓ > xs
ℓ if λℓ > 0. We

point out that if (and only if) the condition

λg

De

Φ
De

≤ hs
g − hs

ℓ

is not fulfilled, a transition liquid-gas has to be written (cf. the following section).

The Figure 6 shows some steady solutions when (18) is fulfilled so that the mixture zone is present. The
mixture region is always smaller than the one obtained without diffusion, i.e. ys

g −ys
ℓ ≤ xs

g −xs
ℓ . More precisely,

we observe:
• The Figure 6a shows the steady solution when Φ = De, λℓ = 2De and λg = 0. We can see the effect of

the diffusion only in the liquid phase: the liquid/mixture transition occurs at ys
ℓ > xs

ℓ and the slope of
hℓ at ys

ℓ is zero.
• Figure 6b shows the steady solution when Φ = De, λℓ = 0 and λg = De. We can see the effect of

the diffusion only in the vapour phase: the mixture/vapour transition occurs at ys
g < xs

g; the width of
the mixture zone is reduced w.r.t. the case without diffusion and there is a jump on the enthalpy h at
transition ys

g.
• Finally Figure 6c shows the steady solution when Φ = De, 2λℓ = De and λg = De. We can see the

effect of the diffusion both in the liquid and in the vapour phases: the liquid/mixture transition occurs
at ys

ℓ > xs
ℓ and the slope of hℓ at ys

ℓ is zero; the mixture/vapour transition occurs at ys
g < xs

g; the width
of the mixture zone is reduced w.r.t. the case without diffusion as observed in the remark 2.4 and there
is a jump on the enthalpy h at transition ys

g.

2.3.2. Case II: Liquid/gas (no mixture, Stefan problem)
The solution without mixture occurs for a sufficiently large ratio λg

De

Φ
De

and is explicited in the following
proposition.

Proposition 2.5 (Steady solution with degenerate diffusion: liquid/gas case). For all λℓ > 0, if

λg

De

Φ
De

≥ hs
g − hs

ℓ (21)



12 ESAIM: PROCEEDINGS AND SURVEYS

(a) Diffusion only in the liquid phase: λℓ = 2De and λg = 0.
We observe the influence on ys

ℓ and the slope at ys
ℓ .

(b) Diffusion only in the gas phase: λg = De and λℓ = 0.
We observe the influence on ∆ys

κ the width of the mixture zone and jump
at ys

g

(c) Diffusion both in liquid and vapour phases: 2λℓ = De and λg = De.
We observe the existence of the mixture zone at steady state

Figure 6. Degenerate diffusion. Case I: Mixture zone at steady state. Common parameters:
Φ = De and λm = 0.
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the mixture zone is not present and the solution of (6)-(7) satisfies

h(y) =


hℓ(y) def= he + Φ

De
y +

[
(hs

g − hs
ℓ) −

(
λg

De
− λℓ

De

)
Φ
De

] [
1 − exp

(
y

λℓ/De

)]
exp

(
−ys

λℓ/De

)
if y < ys

hg(y) = hs
g + Φ

De
(y − ys) if y > ys

where the position ys separating the liquid phase to the gas phase is implicitly defined by hℓ(ys) = hs
ℓ .

Proof. As shown in the proof of Proposition 2.3, there isn’t viscosity solutions to (6)-(7) with mixture if

λg

De

Φ
De

≥ hs
g − hs

ℓ .

On each phase, the integration of the differential equation gives

h(y) =


hℓ(y) def= C1 + Φ

De
y + C2

[
1 − exp

(
y

λℓ/De

)]
if y < ys

hg(y) def= C3 + Φ
De

(y − ys) + C4 exp
(

y

λg/De

)
if y > ys

(22)

The four constants C1 . . . C4 and the transition point ys have to be determined. The inlet Dirichlet boundary
condition and the asymptotic condition (7) define the constants C1 = he and C4 = 0.

A particular choice will be made to define an unique viscosity solution. Such a viscosity solution has to
satisfy {

h(ys,−) = hs
ℓ ,

h(ys,+) = hs
g.

This implies that C3 = hs
g and

C2 =
hs

ℓ − he − Φ
De

ys

1 − exp
(

ys

λℓ/De

) .

The jump relation at the transition point ys reads

De(hs
g − hs

ℓ) = λgh′(ys,+) − λℓh
′(ys,−).

Since C4 = 0, h′
g(y) = Φ

De
for all y so that

λℓ

De
h′

ℓ(ys,−) = λg

De

Φ
De

− (hs
g − hs

ℓ),

which is positive under the assumption (21) and is then compatible with the increasing enthalpy h.
Computing the derivative of the enthalpy in the liquid phase, we obtain an implicit definition of the posi-

tion ys: [
(hs

g − hs
ℓ) + Φ

De

(
λℓ

De
− λg

De

)] (
exp

(
ys

λℓ/De

)
− 1

)
=

[
(he − hs

ℓ) + Φ
De

ys

]
exp

(
ys

λℓ/De

)
.

We now prove that this value is unique. Let us we denote t def= exp
(

ys

λℓ/De

)
≥ 1, C def=(hs

g − hs
ℓ) + Φ

De

(
λℓ

De
− λg

De

)
and R = Φ

De

λℓ

De
. The equation on the flux continuity can be rewritten as C(t − 1) = [(he − hs

ℓ) + R ln(t)] t, thus
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the position ys is implicitly defined by the zero of the function

f(t) = (C + hs
ℓ − he)t − Rt ln(t) − C, t ≥ 1.

Since f(1) = hs
ℓ − he > 0, f(t) −−−→

t→∞
−∞, and f ′′(t) = −R/t < 0, the function f admits an unique zero for

t > 1. □

Figure 7 shows some steady solutions when λg

De

Φ
De

≥ hs
g − hs

ℓ so that the mixture zone is not present.
• Figure 7a shows the steady solution when Φ = De, λℓ = De and λg = 2De. This corresponds to

the smallest choice of λg such that the jump is equals to hs
g − hs

ℓ . The mixture is not present, the
liquid/vapour transition occurs at ys and the slope of hℓ at ys

ℓ is zero.
• Figure 7b shows the steady solution when Φ = De, λℓ = De and λg = 4De. The jump is equals to

hs
g − hs

ℓ , the mixture is not present, the liquid/vapour transition occurs at ys and the slope of hℓ at ys
ℓ

is strictly positive. When λℓ → 0 the slope tends to +∞:

h′
ℓ(ys,−) =

λg

De

Φ
De

− (hs
g − hs

ℓ)
λℓ

De

[
≥ 0 and −−−→

λℓ→0
+∞

]
• Finally Figure 7c shows the steady solution when 2Φ = De, λℓ = 0 and λg = 5De. The mixture is not

present, the liquid/vapour transition occurs at ys. Since λℓ = 0 there is a jump greater to hs
g − hs

ℓ so
that we have a jump in liquid phase that corresponds to a jump on temperature and hℓ(ys) < hs

ℓ :

JhK(ys) = hs
g − hℓ(ys) = λg

De

Φ
De

≥ hs
g − hs

ℓ .

2.4. Generalization to negative power densities
An enthalpy jump was exhibited at the gas transition point ys

g. The gas phase does not play a different role
from the liquid one: it is the situation of a heating a fluid (that is Φ > 0) that induces an increasing solution
in the direction of flow with a jump localized at the last transition point.

In the case of a cooling heat exchanger (that is Φ < 0), the fluid is injected in gas phase (he > hs
g): the

stationary solution is thus decreasing in the direction of flow and it presents:
• a jump at the mixture-liquid transition point in case of

λg

De

|Φ|
De

< hs
g − hs

ℓ ;

• a discontinuity at the gas-liquid transition point otherwise.

2.5. Link to the Stefan problems
The solution exhibited in the Proposition 2.5 is exactly the stationary solution of the following stationary

Stefan problem, a free boundary problem. That is, find the position ys so that the over-determinate elliptic
problem is satisfied: 

Deh′ − λℓh
′′ = Φ in ]0, ys[

h(0) = he < hs
ℓ , h(ys,−) = hs

ℓ ,

Deh′ − λgh′′ = Φ in ]ys, +∞[
h(ys,+) = hs

ℓ , lim
y→∞

h′(y) = Φ
De

,

λgh′(ys,+) − λℓh
′(ys,−) = De(hs

g − hs
ℓ).

(23)
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(a) Φ = De, λℓ = De, λg = 2De.
Disappearing of the mixture zone at steady state

(b) Φ = De, λℓ = De, λg = 4De.
No mixture zone, the slope at ys,− can be > Φ

De

(c) 2Φ = De, λℓ = 0, λg = 5De.
No diffusion in liquid phase, jump in liquid phase at ys

Figure 7. Degenerate diffusion. Case II: No mixture zone at steady state.
Common parameter: λm = 0.
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Written with the temperature as unknown, we obtain the classic stationary Stefan problem, with a continuous
temperature at the transition and a jump condition on thermal flux, as it can be found in [12],

cp,ℓDeT ′ − ωℓT
′′ = Φ in ]0, ys[

T (0) = Te < T s, T (ys,−) = T s,

cp,gDeT ′ − ωgT ′′ = Φ in ]ys, +∞[
T (ys,+) = T s, lim

y→∞
T ′(y) = Φ

cp,gDe
,

ωgT ′(ys,+) − ωℓT
′(ys,−) = De(hs

g − hs
ℓ).

(24)

Note that the last relation of (24) describes the jump on heat flux due to latent heat.
This problem can be solved even if (18) holds, but the solution would loose a physical meaning due to

inconsistent temperature with respect to the considered phase. As a matter of fact, the last relation of (24)
gives

ωℓT
′(ys,−) = λg

Φ
De

− De(hs
g − hs

ℓ) < 0 under (18),

which induces a temperature above T s in a neighborhood of ys in the liquid phase.
To summarize, the Stefan formulations (23) or (24) have to be used only under (21) contrary to (6)-(7)

which is valid under (21) and (18). Under (21), the solutions of the formulations are the same; under (18), the
Stefan solution of (23) or (24) isn’t physical. That is why the PDE formulation (6)-(7) has to be preferred for
numerical solving as it is shown in Appendix A, extended to the non-stationary case.

3. Conclusion and perspectives
It has been shown the expression of the physical stationary solution for a one dimensional degenerate nonlinear

elliptic problem modelling enthalpy subjected to a flow and thermal diffusion with phase change. The expression
of the solution depends strongly on the ratio of heat deposit with flow rate to compare with the ratio of flow
rate and diffusion coefficient in the gas phase (see (21)). It is notable that discontinuous solutions appear in the
context of a modelization with diffuse interface. Furthermore, this mixture region which always exists without
thermal diffusion, can disappear depending on the ratio (21). The selected solution is the viscosity solution
leading to a minimal mixture region. The higher the gas diffusion coefficient, the smaller the mixing region,
until it disappears.

Some unsteady simulations are proposed in the appendix but a more thorough numerical study is to follow
for the full model proposed (2) in a future work.

A. Numerical Time-Dependent solution of the constant-density model
The time-dependent 1D model (4) can be written in a non-conservative formulation as{

∂tρ + ∂y(ρv) = 0,

ρ∂th + ρv∂y(h) = Φ + ∂y(λ(h)∂yh),
∈ R+ × R+.

In the stationary case, the model does not depend on the expression of the density with respect to the enthalpy.
It is remarkable that whatever the density expression, the time-asymptotic solution depends only on the uniform
flow rate. In the physical model, the density is assumed to be a continuous function of the enthalpy h, piecewise
defined for each phase or mixture. In the transient regime, the law describing the density with respect to
the enthalpy affects the unsteady solution. With the EoS describing a mixture at saturation as well as the
pure phases, the density is a continuous and piecewise defined function of the enthalpy (and the constant
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thermodynamic pressure p∗). For simplicity, we choose here to exhibit the transient regime in the case of an
artificially uniform in space and constant in time density. Let us consider ρ(h) = r > 0 constant for all h. The
system becomes {

∂yv = 0,

r∂th + rv∂yh = Φ + ∂y(λ(h)∂yh)
in [0; +∞),

with the boundary condition (rv)(0) = De > 0 and h(0) = he < hs
ℓ .

Thus v(y) = v(0) for all y ∈ R+ and (ρv)(y) = rv(0) = De for all y ∈ R+. The enthalpy equation can be
written as

r∂th + De∂yh − ∂y(λ(h)∂yh) = Φ.

The unsteady model, written on the domain (t, x) ∈]0, T [×]0, +∞[, reads

r∂th + De∂yh − ∂yy(L(h)) = Φ, L(h) def=


λℓ(h − hs

ℓ) if h ≤ hs
ℓ

0 if hs
ℓ < h < hs

g

λg(h − hs
g) if h ≥ hs

g

with L′(h) = λ(h), associated to the following boundary and initial conditions,
h(t, 0) = he < hs

ℓ [inlet Dirichlet boundary condition]
lim

y→∞
∂yh(t, ·) = Φ

De
[asymptotic behaviour]

h(0, ·) = h0(·) < hs
ℓ [initial condition].

We define δt the time step and hn ≈ h(nδt). It is then essential to numerically solve this evolution problem by
a fully implicit scheme,

r
hn+1 − hn

δt
+ De∂yhn+1 − ∂yy(L(hn+1)) = Φ in R+,

associated to a gradient scheme [6], in order to produce a viscosity solution. All the simulations respects
the enthalpy properties at transition (jump relations), namely a jump of enthalpy (when it has to be) at the
transition to the gas phase with an enthalpy close to hs

g (up to the order of space discretization step) at the
first node where enthalpy is upper than hs

g. The increasing solution is also observed on the discrete solution
avoiding spurious numerical oscillations.

Note that the solution converges, when time goes to infinity, to the analytic solution explicited in the
Propositions 2.2 and 2.3. Note also that mixture appears in transient regime even if the asymptotic solution
solves the Stefan problem with a transition liquid/gas, as on the Figure 9.

On Figures 8 and 9, the initial condition is in liquid phase, then appears the mixture and finally the gas
phase. The parameters of Figure 8 satisfy condition (18) with mixture on time-asymptotic solution.

• Figure 8a shows the solution without diffusion in the gas phase and the solution shows the characteristic
transition liquid-mixture with a zero space derivative in the liquid at the motionless transition.

• Figure 8b shows the solution without diffusion in the liquid phase and the solution shows the charac-
teristic transition mixture-gas with a growing jump of enthalpy at the moving transition.

• Finally Figure 8c shows the solution with diffusion in the liquid and gas phase gathering the two previous
behaviors.

The parameters of Figure 9 satisfy condition (21) without mixture on the time-asymptotic solution.
• Figure 9a shows the apparition of mixture then gas phase. The jump on the enthalpy is increasing

along time and is asymptotically the maximal jump hs
g − hs

ℓ . This is the critical case where mixture
disappears asymptotically with a zero space derivative in the liquid at the transition.

• Figure 9b shows the same phenomena with a bigger diffusion in the gas phase leading to positive slope
in the liquid at the transition for sufficient large times.
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• Finally Figure 9c shows the particular case of a zero diffusion in the liquid phase leading to an increasing
jump at the transition point to the gas phase. For sufficiently large time, the jump exceeds the value
hs

g − hs
ℓ due to the lack of diffusion in the liquid phase which behaves like the mixture.
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(a) Diffusion only in the liquid phase: λℓ = 2De, λg = 0.
We observe the influence on ys

ℓ and the slope at ys
ℓ .
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(b) Diffusion only in the gas phase: λℓ = 0, λg = De.
We observe the influence on ∆ys

κ the width of the mixture zone and jump
at ys

g .
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(c) Diffusion both in liquid and vapour phases: λℓ = De, λg = De.
We observe the existence of the mixture zone at steady state.

Figure 8. Mixture zone at steady state. Common parameters: Φ = De, λm = 0.
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(a) Φ = De, λℓ = De, λg = 2De.
We observe the disappearing of the mixture zone at steady state
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(b) Φ = De, λℓ = De, λg = 4De.
We observe the disappearing of the mixture zone and the slope at ys,−

can be > Φ
De
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(c) 2Φ = De, λℓ = 0, λg = 5De.
Diffusion only in vapour phase, no mixture zone, jump in liquid phase
at ys

Figure 9. Diffusion both in liquid and vapour phases. No mixture zone at steady state.


