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Indirect Method for Solving Non-Linear Optimal Control of a Non-Rectilinear Motion of

a Rocket With Variable Mass

Mohamed Aliane∗, Nacima Moussouni, Kahina Louadj, Nicolas Boizot

abstract: In this paper, an optimal trajectory of the rocket angle with a variable mass will be calculated
by considering the aerodynamic forces, the acceleration of gravity and moves with a non-rectilinear motion
from a initial state to a final state with a known altitude. The aim is to optimize the lateral offset of the
rocket. For this, we formulate an optimal control problem where the rocket angle is the control. In order to
solve the problem, let applied Shooting method’s based on the Pontryagin’s maximum principle, and study
the precision and a duration time. Finally, we validate the results by using MATLAB software.
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1. Introduction

In this paper, we have presented a nonlinear optimal control model with free final time to maximize the
lateral offset of a rocket moving from an initial position to a final position, where the control represents
the flight bath angle of the rocket. In order to solve the considered problem, first the Pontryagin’s
maximum principle [15] is applied, then a numerical solution is found using the shooting method.

The problem of maximizing the lateral offset of a rocket which a non-rectilinear motion is formulated
in Section 2. The resolution is detailed in Section 3. In particular, numerical results obtained with the
help of the software MATLAB are given in Section 3.2. Finally, Section 4 concludes the article.

2. Problem Statement

Let consider m(t), t ∈ [0, T ] the mass of the Rocket which moves from an initial position M0 =
(x10, x20) to a final position Mf = (x1f , x2f ), where x1f is free.
x(t) = (x1(t), x2(t)) and v(t) = (v1(t), v2(t)) are respectively the position and speed of the rocket at the
instant t. The motion equations are given by:







·

x1(t) = v1(t),

·

x2(t) = v2(t), t ∈ [0, T ].
(2.1)

Let Tp(t) and θ(t) are respectively the thrust and the flight bath angle of the rocket. We have

→

T p(t) = umax

(

cos(θ(t))
sin(θ(t))

)

, (2.2)
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where umax = |
→

T p(t)|. The earth is supposed to be flat. Let consider aerodynamic forces
−→
F a and the

acceleration of the gravity g is constant (g = 9.80665m.s−2). We obtain the following equations:

Fa(x2(t), v1(t), v2(t)) = α(v1(t)2 + v2(t)2)e−βx2(t)

(

cos(φ(t))
sin(φ(t))

)

, −→g =

(

0
−g

)

, (2.3)

where α, β and φ the parameters of the aerodynamic forces with:

• α: is the product of the drag coefficient: the surface of the machine and the atmospheric density.

• β: is the inverse of the altitude scale.

• φ: is the angle of attack that the speed vector makes with the horizontal, hence:

cos(φ(t)) =
v1(t)

√

v1(t)2 + v2(t)2
, (2.4)

and

sin(φ(t)) =
v2(t)

√

v1(t)2 + v2(t)2
, (2.5)

Figure 1: Forces applied

The dynamics are given by law of quantity of the movement theorem is given by the following formulas:

d−→p

dt
=

(m + dm)(−→v + d−→v ) − dm(−→v +
−→
k ) − m−→v

dt
=

−→
R. (2.6)

By simplifying the formula (2.6), after eliminating the quadratic term to the differentials, we obtain:

d−→p (t)

dt
= m(t)

d−→v (t)

dt
−

−→
k

dm(t)

dt
=

−→
R (t), (2.7)

therefore

m(t)
d−→v

dt
−

−→
k

dm(t)

dt
= m(t)−→g +

−→
F a(x2(t), v1(t), v2(t)), (2.8)

where
−→
R = m(t)−→g +

−→
F a(x2(t), v1(t), v2(t)).

We obtain the following equation:

d
→

v (t)

dt
=

→

g +

→

T p(t)

m(t)
+

→

F a(x2(t), v1(t), v2(t))

m(t)
. (2.9)
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where
−→
T p =

−→
k

dm

dt
,

dm

dt
= −bumax and ‖

−→
k ‖=

1

b
. (2.10)

By projecting on the x−axis, we obtains:

dv1(t)

dt
=

umax

m(t)
cos(θ(t)) −

α

m(t)
v1(t)

√

v1(t)2 + v2(t)2e−βx2(t), (2.11)

and
dv2(t)

dt
=

umax

m(t)
sin(θ(t)) −

α

m(t)
v2(t)

√

v1(t)2 + v2(t)2e−βx2(t) − g. (2.12)

We formulate our problem by the optimal control problem whose the control represents the flight
bath angle and our goal is to bring back the orbit rocket of an altitude known a priori with a maximum
lateral offset. The mathematical model is given as follows whose used the following data [19]:







































































































Minimize J(θ, T ) = −x1(T ),

ẋ1(t) = v1(t),

ẋ2(t) = v2(t),

v̇1(t) =
umax

m(t)
cos(θ(t)) −

αv1(t)
√

v1(t)2 + v2(t)2

m(t)
e−βx2(t),

v̇2(t) =
umax

m(t)
sin(θ(t)) −

αv2(t)
√

v1(t)2 + v2(t)2

m(t)
e−βx2(t) − g,

ṁ(t) = −bumax,

x1(0) = 0, x2(0) = 0.005, v1(0) = 0, v2(0) = 0.01, m(0) = m0

x2(T ) = h, v1(T ) = vc, v2(T ) = 0,

θ(t) ∈ R, t ∈ [0, T ], T free,

(2.13)

where
α = 2.164, β = 0.113, vc = 7.905km.s−1, h = 180km, m0 = 122176.39kg.

3. Solution of Problem by using Indirect Method

The analytical solution of the problem is very complicated. For this, the problem is solved numerically
with the indirect shooting method based on the Pontryagin’s maximum Principle.

3.1. Necessary conditions of optimality

The theoretical solution of the problem is based on the Pontryagin’s maximum principle, which gives
a necessary condition of optimality. The Hamiltonian of the problem (2.13) is defined as follows:

H : R5 × R
5 × R −→ R

(x(t), p(t), θ(t)) 7−→ H(x(t), p(t), θ(t)),
(3.1)

where
x(t) = (x1(t), x2(t), v1(t), v2(t), m(t))

and
p(t) = (pj(t), j = 1 . . . 5).

H = p1(t)v1(t) + p2(t)v2(t)

+p3(t)

(

umax

m(t)
cos(θ(t)) −

α

m(t)
v1(t)

√

v1(t)2 + v2(t)2e−βx2(t)

)

+p4(t)

(

umax

m(t)
sin(θ(t)) −

α

m(t)
v2(t)

√

v1(t)2 + v2(t)2e−βx2(t) − g

)

−bp5(t)umax.

(3.2)
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where p(t), is the adjoint vector, it is solution of the following system:























































































·

p1(t) = 0,

·

p2(t) = (p3(t)v1(t) + p4(t)v2(t))
−αβ

√

v1(t)2 + v2(t)2

m(t)
e−βx2(t),

·

p3(t) = −p1(t) + α
p3(t)(2v1(t)2 + v2(t)2) + p4(t)v1(t)v2(t)

m(t)
√

v1(t)2 + v2(t)2
e−βx2(t),

·

p4(t) = −p2(t) + α
p3(t)v1(t)v2(t) + p4(t)(v1(t)2 + 2v2(t)2)

m(t)
√

v1(t)2 + v2(t)2
e−βx2(t),

ṗ5(t) = umax

m(t)2 (p3(t) cos(θ(t)) + p4(t) sin(θ(t)))

−
α
√

v1(t)2 + v2(t)2e−βx2(t)

m(t)2
(p3(t)v1(t) + p4(t)v2(t)), t ∈ [0, T ].

(3.3)

The first order optimality condition gives:

∂H

∂θ
= −

umax

m(t)
p3(t) sin(θ) +

umax

m(t)
p4(t) cos(θ) = 0, (3.4)

Since p3(t) 6= 0, ∀t ∈ [0, T ], the equation (3.4) is equivalent to:

tan(θ(t)) =
p4(t)

p3(t)
, for all t ∈ [0, T ], (3.5)

So

θ∗(t) = arctan

[

p4(t)

p3(t)

]

, t ∈ [0, T ]. (3.6)

The equation (3.5) is also equivalent to:

cos(θ(t)) =
p3(t)

√

p3(t)2 + p4(t)2
, (3.7)

sin(θ(t)) =
p4(t)

√

p3(t)2 + p4(t)2
, t ∈ [0, T ]. (3.8)

Furthermore, we have
∂2H

∂θ2 = −
umax

m(t)
p3(t) cos(θ) −

umax

m(t)
p4(t) sin(θ)

= −
umax

m(t)

(

p3(t)
p3(t)

√

p3(t)2 + p4(t)2

)

−
umax

m(t)

(

p4(t)
p4(t)

√

p3(t)2 + p4(t)2

)

= −
umax

m(t)

√

p3(t)2 + p4(t)2 < 0.

(3.9)

Since umax and m(t), ∀t ∈ [0, T ], are nonnegative, we get
∂2H

∂θ2 < 0.

Therefore, the second order necessary optimality condition is checked. The dynamic system is au-
tonomous, so the Hamiltonian is constant for all t ∈ [0, T ]. Therefore, we will have

H(t, x(t), p(t), θ(t)) = c. (3.10)
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3.1.1. The tranversality conditions. Since T is free, according to the condition of transversality, we have:

H(T, x(T ), p(T ), θ(T )) = 0. (3.11)

From relationships (3.10) and (3.11), we get

H(t, x(t), p(t), θ(t)) = 0, ∀t ∈ [0, T ]. (3.12)

The tranversality conditions can be used to calculate the first and the last components of p(T ).

3.2. Numerical solution by the Shooting method

The Shooting method is based on the Pontryagin’s maximum principle. It consists to find a zero of
the Shooting function by using Newton method’s. The shooting method defined in the three following
steps [1,2,12,17]:

• Step 1: Form a boundary value problem using the model equations and the adjoint vectors equations
as well as the transversality conditions.

• Step 2: Determine the shooting function.

• Step 3: Solve a system of nonlinear equations.

Based on the Pontryagin’s maximum principle, optimality equations are given as follows:



















































































































































































ẋ1(t) = x3(t),

ẋ2(t) = x4(t),

ẋ3(t) =
umax

x5(t)

p3(t)
√

p3(t)2 + p4(t)2
−

αx3(t)
√

x3(t)2 + x4(t)2

x5(t)
e−βx2(t),

ẋ4(t) =
umax

x5(t)

p4(t)
√

p3(t)2 + p4(t)2
−

αx4(t)
√

x3(t)2 + x4(t)2

x5(t)
e−βx2(t) − g,

ẋ5(t) = −bumax,

ṗ1(t) = 0,

ṗ2(t) = −(p3(t)x3(t) + p4(t)x4(t))
αβ
√

x3(t)2 + x4(t)2

x5(t)
e−βx2(t),

ṗ3(t) = −p1(t) + α
p3(t)(2x3(t)2 + x4(t)2) + p4(t)x3(t)v2(t)

x5(t)
√

x3(t)2 + x4(t)2
e−βx2(t),

ṗ4(t) = −p2(t) + α
p3(t)x3(t)x4(t) + p4(t)(x3(t)2 + 2x4(t)2)

x5(t)
√

x3(t)2 + x4(t)2
e−βx2(t),

ṗ5(t) =
umax

x5(t)2

√

p3(t) + p4(t) −
α
√

x3(t)2 + x4(t)2e−βx2(t)

x5(t)2
(p3(t)x3(t) + p4(t)x4(t)),

x1(0) = 0, x2(0) = 0.005, x3(0) = 0, x4(0) = 0.01, x5(0) = m0, p1(T ) = 1, p5(T ) = 0,

x2(T ) = h, x4(T ) = vc, x4(T ) = 0, t ∈ [0, T ],

(3.13)

where
x(t) = (xj(t), j = 1 . . . 5) = (x1(t), x2(t), v1(t), v2(t), m(t)).

We construct the Shooting function:

G : R
10 −→ R

10

(p(0), p(T )) −→ G(p(0), p(T )),
(3.14)
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and

G(p(0), p(T )) =

































p1(0) − 1
p2(0) − λ1

p3(0) − λ2

p4(0) − λ3

p5(0) − λ4

p1(T ) − 1
p2(T ) − λ5

p3(T ) − λ6

p4(T ) − λ7

p5(T )

































.

Therefore, the problem (3.13) is equivalent to:



















































































































































































ż1(t) = z3(t),

ż2(t) = z4(t),

ż3(t) =
umax

z5(t)

z8(t)
√

z8(t)2 + z9(t)2
−

αz3(t)
√

z3(t)2 + z4(t)2

z5(t)
e−βz2(t),

ż4(t) =
umax

z5(t)

z9(t)
√

z8(t)2 + z9(t)2
−

αz4(t)
√

z3(t)2 + z4(t)2

z5(t)
e−βz2(t) − g,

ż5(t) = −bumax,

ż6(t) = 0,

ż7(t) = −(z8(t)z3(t) + z9(t)z4(t))
αβ
√

z3(t)2 + z4(t)2

z5(t)
e−βz2(t),

ż8(t) = −z6(t) + α
z8(t)(2z3(t)2 + z4(t)2) + z9(t)z3(t)z4(t)

x5(t)
√

z3(t)2 + z4(t)2
e−βz2(t),

ż9(t) = −z7(t) + α
z8(t)z3(t)z4(t) + z9(t)(z3(t)2 + 2z4(t)2)

z5(t)
√

z3(t)2 + z4(t)2
e−βz2(t),

ż10(t) =
umax

z5(t)2

√

z8(t)2 + z9(t)2 −
α
√

z3(t)2 + z4(t)2e−βz2(t)

z5(t)2
(z8(t)z3(t) + z9(t)z4(t)),

z1(0) = 0, z2(0) = 0.005, z3(0) = 0, z4(0) = 0.01, z5(0) = m0, z6(T ) = 1, z10(T ) = 0,

z2(T ) = h, z4(T ) = vc, z4(T ) = 0, t ∈ [0, T ],

(3.15)

where z(t) = (zi(t), i = 1, . . . , 10) = (x(t), p(t)).
The numerical solution of the nonlinear system G(p(0), p(T )) = 0 can be calculated using the Newton’s
method.
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Figure 2: Variation of the flight bath angle according to the time

• From Figure 2, we note that the angle θ(t) decreases as a function of time from θ(0) = 0.35π to
θ(tc) = −1.57π , where tc = 136.1s (tc is the commutation time), then increase quickly in the interval
[tc, tc + ǫ], where ǫ = 0.5, until it get to the angle θ(tc + ǫ) = 1.57π, then it settles at this time in the
interval [tc + ǫ, T ]. In the reality of these results, The rocket change the direction at time tc = 136.1s.
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Figure 3: Variation of the lateral offset according to the time

• From Figure 3, we remark that x1(t) is rapidly increases with time, it reaches the optimal lateral
offset x∗

1(T ) = 218.9km. The angle is proportional than lateral offset, for this last, lateral increases.
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Figure 4: Variation of the altitude according to the time

• Furthermore, we see that x2(t) reaches the altitude target 180km. While the rocket is in movement,
the altitude increase (See Figure 4) .
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Figure 5: Variation of the speed components according to the time

• The velocity v1(t) is also increasing with time, it varies from v1(0) = 0 to v1(T ) = vc = 7.904km.s−1,
v1(t) is the speed which used to follows trajectory and to prepare to enter orbit, v2(t) grows from
v2(0) = 0.005km.s−1 to v2(tc + ǫ) = 2.359km.s−1 where tc + ǫ = 136.6s, then decreases from v2(tc + ǫ)
to v2(T ) = 0, v2(t) is the speed which guarantees its arrival in orbit (See Figure 5).
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Figure 6: Mass of the rocket

• From Figure 6, we remark that m(t) of the vehicle aerospatial decreases in the form of a linear
function from m(0) = 122176.39kg to m(T ) = 3600kg within a period T = 158.3s, more the rocket in
motion, the mass decreases.

• Finally, we note that the execution time of the Shooting method necessary to find the optimal
solution is 1.87s.

4. Conclusion

In this work, we have modelled a practical problem arising in aerospace field as a nonlinear optimal
control problem. First, the Pontryagin’s maximum principle has been used which gives a necessary
condition of optimality. Then the considered problem is solved numerically with the shooting method.
The choice is carried the shooting method in the numerical resolution for its precision and its speed. The
results found coincide with our reality: when the time t increases, x2(t) increases and v2(t) then decreases
at time tc until it vanishes, to avoid the explosion of gear at the orbital entrance.
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