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KANTOROVICH-RUBINSTEIN DUALITY THEORY FOR

THE HESSIAN

KAROL BO LBOTOWSKI AND GUY BOUCHITTÉ

Abstract. The classical Kantorovich-Rubinstein duality theorem es-
tablishes a significant connection between Monge optimal transport and
maximization of a linear form on the set of 1-Lipschitz functions. This
result has been widely used in various research areas. In particular, it
unlocks the optimal transport methods in some of the optimal design
problems. This paper puts forth a similar theory when the linear form
is maximized over C1,1 functions whose Hessian lies between minus and
plus identity matrix. The problem will be identified as the dual of a
specific optimal transport formulation that involves three-point plans.
The first two marginals are fixed, while the third must dominate the
other two in the sense of convex order. The existence of optimal plans
allows to express solutions of the underlying Beckmann problem as a
combination of rank-one tensor measures supported on a graph. In the
context of two-dimensional mechanics, this graph encodes the optimal
configuration of a grillage that transfers a given load system.

Keywords: Hessian-constrained problem, Monge optimal transport, tensor-
valued measures, second-order Beckmann problem, convex order, stochastic
dominance, optimal grillage.
2020 Mathematics Subject Classification: 49J45, 49K20, 28A50,
60E15, 74P05

1. introduction

The classical Kantorovich-Rubinstein duality theorem plays a fundamen-
tal role in the Monge optimal transport theory [29, 32]. In the Euclidean
framework, it states that, for given probability measures µ, ν on Rd with
finite first-order moments, the L1 Monge-Kantorovich distance

W1(µ, ν) = inf

{¨
|x− y| γ(dxdy) : γ ∈ Γ(µ, ν)

}
coincides with the maximum in the following linear programming problem

I1(f) = sup

{ˆ
u df : u ∈ C0,1(Rd), lip(u) ≤ 1

}
(1.1)
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2 KANTOROVICH-RUBINSTEIN DUALITY THEORY FOR THE HESSIAN

for the signed measure f = ν − µ. Above, Γ(µ, ν) stands for the set of
probability measures on Rd×Rd having the first and second marginal µ and
ν, respectively.

The equality W1(µ, ν) = I1(f) is a key ingredient for deriving a PDE
approach to the optimal transport problem, see e.g. [8, 17]. It also allows
to interpret the Monge distance as the total variation of a vector measure
σ ∈ M(Rd;Rd) which solves the so-called Beckmann problem:

min

{ˆ
|σ| : −div σ = f in D′(Rd)

}
. (1.2)

The geometric insights into the optimal transport interpretation are very
meaningful. Using the notion of transport rays or, more generally, geodesics,
it is possible to recast the solutions to Beckmann problem from the optimal
transport plans γ via the decomposition formula:

σ =

¨
λx,y γ(dxdy), λx,y :=

y − x

|y − x|
H1 [x, y]. (1.3)

In particular, it follows that every optimal measure σ is supported on the
convex (geodesic) hull of the support of f .

In the late 1990s, a bridge between Monge optimal transport and optimal
design was proposed in [8]. It was found that an optimal measure σ for (1.2)
represents the heat flow in a conductor to be optimally designed for a given
source f . The optimal transport approach can be applied accordingly to
derive the best distribution of the conductive material. In particular, this
approach covers the case of concentrated source terms f , which cannot be
treated by the classical PDE methods.

Later on, the paper [7] has shown that a larger class of optimal design
problems can be tackled by solving a Beckmann-type problem, see also the
recent work [6]. This includes compliance minimization of elastic bodies
where σ is tensor-valued, while the potential u is vectorial, and they repre-
sent stress and displacement, respectively. However, the optimal transport
strategy does not automatically extend to these cases. In view of the impor-
tant underlying applications, there is an urge to study possible extensions
of the Kantorovich-Rubinstein duality principle. Such a question could be
formulated as follows. Let A be a linear differential operator on smooth
vector-valued functions u : Ω ⊂ Rd → Rn such that Au : Ω → Rn ×Rd, and
for ϱ take a semi-norm on real n × d matrices. Is there an optimal trans-
port formulation that we can employ to address the following maximization
problem:

sup
{
⟨u, f⟩ : u ∈ C∞(Rd;Rn), ϱ(Au) ≤ 1 in Ω

}
, (1.4)

where Ω is a domain in Rd, and f is a suitable source term supported on
Ω ? By standard convex duality, the above supremum can be written as an
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infimum in the following Beckmann-type problem:

min

{ˆ
ϱ0(σ) : A∗σ = f in

(
D′(Rd)

)n
, spσ ⊂ Ω

}
, (1.5)

where ϱ0 is the polar of ϱ given by

ϱ0(S) := sup
{
⟨Q,S⟩ : ϱ(Q) ≤ 1

}
. (1.6)

In the classical Rubinstein-Kantorovich framework, f is a scalar measure
(n = 1), ϱ is the Euclidean norm, and A is the gradient operator. In order
that the supremum (1.4) is finite, f must be balanced, that is µ = f+ and
ν = f− must have the same mass. Note that if Ω is not convex, then the
Euclidean distance appearing in the definition of W1(µ, ν) should be replaced
by the geodesic distance induced by Ω. For a detailed study see [7] where a
number of explicit examples is given.

When A is no longer the gradient operator, there are very few results
regarding a possible optimal transport approach. In the recent work [4], the
present authors put forward a formulation where the Monge-Kantorovich
distance emerges and is maximized with respect to a suitable class of metrics
d(x, y) on Ω. Therein, the potential u becomes a pair (v, w) : Ω → Rd × R,
and it must meet the constraint e(v) + 1

2∇w ⊗ ∇w ≤ Id where e(v) is
the symmetrized gradient. The non-linear operator on the left hand side
defines the strain tensor in the Föppl’s membrane model [13], rendering the
formulation in [4] an optimal membrane problem. Despite the non-linearity,
the problem admits the form (1.5) upon the right choice of A and ϱ, see [4]
for more details. Prior to the latter work, an attempt to treat the case where
A is simply the symmetrized gradient (i.e. Au = e(u) for u : Ω → Rd) was
made in [10] where (1.5) is nothing else but the famous Michell problem.
However, to our knowledge, the bridge with optimal transport in this case
has not yet been established, and challenging open problems remain.

The aim of the present paper is to provide an optimal transport approach
in the case of the Hessian operator Au = ∇2u and with ϱ being the spectral
norm. We will limit ourselves to the case when Ω = Rd, and we will assume
that f is a measure, more accurately f = ν − µ for two probabilities µ, ν.
The special choice of ϱ makes it possible to rewrite (1.4) as the second-order
counterpart of (1.1):

I(f) := sup

{ˆ
u dν −

ˆ
u dµ : u ∈ C1,1(Rd), lip(∇u) ≤ 1

}
. (1.7)

The supremum I(f) is finite and is attained if and only if µ and ν share the
barycentre [µ] = [ν] while exhibiting finite second-order moments: µ, ν ∈
P2(Rd). This way I(f) defines a distance between such µ and ν. We should
point out that similar distances (called ideal metrics) were introduced years
ago by V.M. Zolotarev [34] with the aim of studying continuity and stability
of stochastic models in probability theory.
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Under the foregoing assumptions on the data µ, ν, we will see that the
classical duality theory leads to a well-posed second-order Beckmann formu-
lation:

I ′(f) := min

{ˆ
ϱ0(σ) : σ ∈ M(Rd;Sd×d), div2σ = ν − µ in D′(Rd)

}
(1.8)

with the zero-gap equality I(f) = I ′(f). Here, ϱ0 is the Schatten norm on

symmetric matrices S ∈ Sd×d given by ϱ0(S) =
∑d

i=1 |λi(S)|, and
´
ϱ0(σ) is

intended in the sense of convex one-homogeneous functionals on measures
[19]. Through the classical methods, the optimality conditions involving
pairs (u, σ) can be derived, even in the case of singular measures σ and for
general semi-norms ϱ. For a detailed study we refer to e.g. [9] where optimal
design problems for plates are considered.

At the core of our work lies a connection between the pair (1.7), (1.8)
and a newly proposed three-marginal optimal transport problem. Let us
introduce the cost function defined for each triple (x, y, z) ∈ (Rd)3 by

c(x, y, z) :=
1

2

(
|z − x|2 + |z − y|2

)
. (1.9)

We are looking for probabilities π ∈ P2((Rd)3) (three-marginal transport
plans) to solve

J (µ, ν) := inf

{˚
c(x, y, z)π(dxdydz) : π ∈ Σ(µ, ν)

}
. (1.10)

The set Σ(µ, ν) ⊂ P2((Rd)3) consists of 3-plans π whose first and second
marginal is µ and ν, respectively, and which satisfy the following equations˚

⟨z − x,Φ(x)⟩π(dxdydz) =

˚
⟨z − y,Ψ(y)⟩π(dxdydz) = 0 (1.11)

for any smooth test functions Φ,Ψ : Rd → Rd. It will unravel that these
relations have a natural interpretation in probability theory (via convex
order) as well as in structural mechanics (moment equilibrium at junctions
of a grillage). The main result of the paper reads as follows:

Theorem 1.1. Take µ, ν ∈ P2(Rd) sharing the barycentre [µ] = [ν], and let
J (µ, ν) be defined by (1.10). For f = ν−µ the value I(f) is given by (1.7).
Then,

(i) it holds that

I(f) = J (µ, ν), (1.12)

while there exist optimal pairs (u, π) solving (1.7) and (1.10), respectively;

(ii) an admissible pair (u, π) is optimal if and only if the following three-point
equality is satisfied π-a.e., with c defined by (1.9),

[u(y) + ⟨∇u(y), z − y⟩] − [u(x) + ⟨∇u(x), z − x⟩] = c(x, y, z) (1.13)

for π-a.e. (x, y, z).
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It is worth mentioning that the equality (1.13) is in close relation with the
admissibility of u in (1.7). Indeed, following [21], the condition lip(∇u) ≤ 1
is equivalent to the existence of a continuous vector function Φ : Rd → Rd
such that:

[u(y) + ⟨Φ(y), z − y⟩] − [u(x) + ⟨Φ(x), z − x⟩] ≤ c(x, y, z) (1.14)

∀ (x, y, z) ∈ (Rd)3.
In addition, the inequality (1.14) can be satisfied only for Φ = ∇u.

With the equality (1.12) at hand, we are in a position to propose the
tensor counterpart of the decomposition (1.3) that was useful in the first-
order gradient case. We show that optimal measures for the second-order
Beckmann problem (1.8) can be decomposed to rank-one tensor measures
supported on polygonal lines. More precisely, for any triple (x, y, z) let us
define the following measure valued in the space of symmetric matrices, i.e.
an element of M(Rd;Sd×d):

σx,y,z(dξ) := |ξ − z|
(
σz,x(dξ) − σz,y(dξ)

)
, (1.15)

where we denote

σa,b =
b− a

|b− a|
⊗ b− a

|b− a|
H1 [a, b]. (1.16)

The measure σx,y,z (see Fig. 1) is supported on the set [x, z] ∪ [z, y]. Its
second distributional divergence is div2σx,y,z = fx,y,z, where

fx,y,z := δy − δx − div
(
(z − y) δy − (z − x) δx

)
(1.17)

includes a first-order term. The key observation is that σx,y,z solves (1.8) for
f = fx,y,z with the equality I(fx,y,z) = c(x, y, z) provided that z belongs to

the ball B
(x+y

2 , |x−y|2

)
(see Proposition 4.6). Accordingly, our strategy for

solving (1.8) for f = ν−µ is to search for optimal tensor measures σ in the
form

σ =

˚
σx,y,z π(dxdydz),

where π is a suitable three-marginal plan, see the convention (1.22) below.
Satisfying the admissibility condition π ∈ Σ(µ, ν) in the three-marginal op-
timal transport formulation (1.10) guarantees that div2σ =

˝
fx,y,zdπ =

ν − µ.

Corollary 1.2. Let π be an optimal 3-plan for (1.10). Then,

(i) the tensor measure σ =
˝

σx,y,z π(dxdydz) solves the second-order Beck-
mann problem (1.8) for f = ν − µ;

(ii) let γ := Π#
1,2(π) be the marginal of π with respect to the first two vari-

ables, and let u be any solution of (1.7). Then, for any π-integrable test
function φ : (Rd)3 → R, we have the disintegration formula:˚

φdπ =

¨
φ
(
x, y, zu(x, y)

)
γ(dxdy),
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where

zu(x, y) :=
x+ y

2
+

∇u(y) −∇u(x)

2
. (1.18)

As a result, the optimal measure σ is supported on the closed subset

B(spµ, sp ν) :=
⋃{

B
(x+ y

2
,
|x− y|

2

)
: (x, y) ∈ spµ× sp ν

}
, (1.19)

where B(x0, r) is the closed ball of radius r > 0 and centred at x0 ∈ Rd.

Let us recall that, in the first-order case (1.2), a geometric bound on the
support of any optimal measure can be expressed as in (1.19) if we replace
the ball on the right-hand side by the line segment [x, y]. Contrarily, in the
Hessian case, a larger set is required to cover the support of the possible
optimal measures. This will be confirmed on a number of examples. Thus,
we refute the conjecture in [9] where, assuming mild conditions on the norm
ϱ0 entering (1.8), it was suggested that optimal measures are supported on
the convex hull of the source f .

The proof of the central equality (1.12), that we will present here, passes
through an unexpected link between our three-marginal optimal transport
formulation (1.10) and optimization under the convex order dominance con-
straints. This connection is based on the observation that the existence of
a 3-plan π ∈ Σ(µ, ν) which admits ρ as the third marginal is equivalent to
the convex order conditions ρ ⪰c µ, ρ ⪰c ν, that is:ˆ

φdρ ≥ max

{ˆ
φdµ,

ˆ
φdν

}
for all convex φ : Rd → R. (1.20)

Theorem 1.3. Let µ, ν ∈ P2(Rd) be probability measures satisfying [µ] =
[ν], and set

V(µ, ν) = inf
{

var(ρ) : ρ ∈ P2(Rd), ρ ⪰c µ, ρ ⪰c ν
}
, (1.21)

where var(ρ) is the variance of the measure ρ.

(i) With f = ν − µ, the following equalities hold true:

I(f) = V(µ, ν) − var(µ) + var(ν)

2
= J (µ, ν).

Moreover, an admissible 3-plan π ∈ Σ(µ, ν) is optimal for (1.10) if and only
if its third marginal ρ is a minimizer in (1.21).

(ii) The infimum in (1.21) is achieved. Moreover, to any minimal ρ we can
associate at least one 3-plan π that solves (1.10) and whose three marginals
are µ, ν, and ρ, subsequently.

Here, several comments are in order. When proving the relation between
I(f) and V(µ, ν), we shall pass through a duality result (Proposition 3.3)
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which allows to identify V(µ, ν) as the supremum in the following auxiliary
problem:

V ′(µ, ν) := sup

{ˆ
φdµ+

ˆ
ψ dν : φ,ψ are convex C1,1 functions,

φ(z) + ψ(z) ≤ |z − z0|2 ∀ z ∈ Rd
}
,

where z0 = [µ] = [ν]. Then, the crucial equality I(f) = V ′(µ, ν)− 1
2

(
var(µ)+

var(ν)
)

will be derived directly in Section 3.3 by exploiting a smoothing effect
due to convexification of semi-concave functions [12, 14, 3], see Lemma 3.5
where we restate this property.

On another note, the construction of an optimal 3-plan π announced in
the assertion (ii) will use two martingale transports: one between µ and ρ,
and the other between ν and ρ. Their existence follows from the classical
theorem of Strassen. An optimal π can be then constructed via a gluing
argument, see the statement and the proof of Lemma 3.7. In general, such
π is not unique.

Let us also point out that the problem (1.21) falls within a larger class
of stochastic optimization problems under dominance constraints, for which
there exist many applications in mathematical finance, statistical decision
theory, or economics. For instance, see the papers [15, 26, 33].

Figure 1. The tensor measure σx,y,z; the density with re-
spect to H1 ([x, z]∪ [z, y]) is illustrated. Blue and red indi-
cate the positive and the negative part, respectively.

We close the introduction with a comment on the close relation between
the results presented herein and an optimal design problem in mechanics
when d = 2. Any measure σ ∈ M(Rd;S2×2) that satisfies the equation
div2σ = f represents a bending moment tensor in a plate that is subject
to a load f . If the measure σ is of the form

˝
σx,y,zdπ, then we speak of

a grillage – a particular plate that decomposes to straight bars. The bars
exhibit linearly varying rank-one bending moments, see Fig. 1 depicting
the basic two-bar measure σx,y,z. A natural issue studied in the literature
[28, 27, 5] consists in finding an optimal configuration of the grillage, i.e.
a coupling π that minimizes a certain total energy functional. To date,
however, the existence result was not available, and neither were the criteria
for the finite support of potential solutions π, which corresponds to practical
designs in the form of finite systems of bars.
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In this work we show that, when the load f is a measure, an optimal
grillage can be recast by solving the new three-marginal optimal transport
formulation (1.10). As a byproduct, we get the bound B(sp f+, sp f−) on the
support of the associated tensor measure σ. Moreover, a finitely supported
optimal 3-plan π can be selected provided that f is also finitely supported.
In this case, the induced measure σ concentrates on a graph. It should be
noted that, despite a similarity to the optimal grillage problem, there is no
such OT reformulation for the more popular optimal truss problem. In fact,
it has been known for 120 years that optimal trusses do not exist even for
the simplest load data [23]. In this case, a relaxation in the form of the
famous Michell formulation [10, 22] is essential. On top of that, a geometric
bound on the support of its solutions is still pending.

Finally, we stress that our results concerning optimal grillages do not
immediately extend to the case of a source f containing a first-order dis-
tribution term, or to the case when the support of the induced stress σ is
confined within a given domain Ω ⊂ Rd. Such extensions are beyond the
scope of this paper and are worthy of future study.

The paper is organized as follows. In the preliminary Section 2 we adapt
the classical duality theory to show the no-gap equality between (1.7) and
(1.8) as well as the existence of an optimal pair (u, σ). Besides, in view of
the forthcoming connection with the stochastic optimization, we give a short
background on convex order and its relation with martingale transport. The
Section 3 presents the proofs of Theorem 1.1, Corollary 1.2, and Theorem
1.3. In Section 4, we give a series of examples where optimal configurations
are determined explicitly. The Section 5 is devoted to the underlying 2D
optimal design formulation. Numerical examples of optimal grillages are
given and discussed along with the related open questions. Readers who are
less interested in the applications should feel free to skip this final section.

Acknowledgements. The first author would like to thank the Labora-
toire IMATH, Université de Toulon for hosting his visit in June 2022. The
second author was partially supported by the French project ANR-23-CE40-
0017. Both authors are grateful to the Lagrange Mathematics and Comput-
ing Research Center in Paris for facilitating fruitful discussions with Guil-
laume Carlier, Quentin Mérigot, and Filippo Santambrogio. The authors
are thankful for their remarks which have influenced this paper.

Notations. Throughout the paper we will use the following notations.

• The Euclidean norm of z ∈ Rd is denoted by |z|.
• By Sd×d we shall denote the space of d × d symmetric matrices, while
Sd×d+ will be its subset whose elements are positive semi-definite. Given

A,B ∈ Sd×d, we will write A ≤ B if B − A ∈ Sd×d+ . Moreover, TrA
stands for the trace of A, while Id is the identity matrix.

• For natural k ∈ N ∪ {+∞}, Ck(Rd) is the spaces of functions on Rd
that are continuously differentiable up to order k, while ∇u and ∇2u
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are the gradient and the Hessian of a function u ∈ C1(Rd) and u ∈
C2(Rd), respectively. Moreover, C0(Rd) ⊂ C0(Rd) denotes the subset of
continuous functions that vanish at infinity.

• D(Rd) denotes the space of C∞ functions that are compactly supported,
and D′(Rd) is the space of distributions on Rd (the dual of D(Rd)).

• For a function v : Rd → Rn, lip(v) stands for the Lipschitz constant equal

to supx ̸=y
|v(x)−v(y)|

|x−y| .

• By C0,1(Rd) (resp. C1,1(Rd)) we understand the Banach space of these
functions u ∈ C0(Rd) (resp. u ∈ C1(Rd)) for which lip(u) < +∞ (resp.
lip(∇u) < +∞).

• For a natural k, W k,∞
loc (Rd) is the space of functions u that belong to

the Sobolev space W k,∞(Ω) for any pre-compact domain Ω ⊂ Rd. For

u ∈W 2,∞
loc (Rd), the weak Hessian is denoted by ∇2u.

• M+(Rd) is the space of Borel measures on Rd with values in [0,+∞]. The
Banach space of Borel measures valued in a finite dimensional normed
vector space E is denoted by M(Rd;E). In addition, we agree that
M(Rd) := M(Rd;R).

• Ld,Hk, δx0 are, respectively, the Lebesgue, the k-dimensional Hausdorff,
and the Dirac delta measures on Rd.

• The topological support of µ ∈ M(Rd;E) is denoted by spµ, while µ A
is the restriction to a Borel subset A ⊂ Rd. By the symbol µ ≪ ν
we understand the absolute continuity of a measure µ with respect to
ν ∈ M+(Rd).

• For a measure µ and a µ-measurable map T , by T#(µ) we understand
the push forward, i.e. T#(µ)(B) := µ

(
T−1(B)

)
for every Borel set B.

• P(Rd) := {µ ∈ M+(Rd) : µ(Rd) = 1} is the set of probabilities on Rd.
• For γ ∈ P(Rd× . . .×Rd) on the product of n ambient spaces, by γk1,...,km

we understand the marginal Π#
k1,...,km

(γ) where, for m ≤ n, Πk1,...,km is

the projection onto the coordinates k1, . . . , km.
• Assume µ ∈ M+(Rn) and a map x 7→ λx ∈ M(Rm;E) that is µ-

measurable in the sense that x 7→ λx(A) is µ-measurable for any Borel set
A ⊂ Rm. Provided that

´
|λx|(Rd)µ(dx) < +∞, we will use the notation

ν =

ˆ
λxµ(dx), γ = µ⊗ λx (1.22)

to define measures ν ∈ M(Rm;E) and γ ∈ M(Rn × Rm;E) that satisfy

ν(A) :=

ˆ
λx(A)µ(dx), γ(B) :=

ˆ (ˆ
χB(x, y)λx(dy)

)
µ(dx)

for every Borel sets A ⊂ Rm and B ⊂ Rn ×Rm, where χB is the charac-
teristic function of the latter.

• [µ] stands for the barycentre of a probability µ ∈ P(Rd) whose first-order

moment is finite, whilst var(µ) :=
´
|x− [µ]|2µ(dx) is its variance.
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• ν ⪰c µ denotes the convex order between two probability measures µ, ν ∈
P(Rd) of finite first-order moments, and MT (µ, ν) ⊂ P(Rd × Rd) is the
set of martingale transport plans.

• µ ⋆ ν stands for the convolution of two probabilities µ, ν ∈ P(Rd).
• ⟨ · , · ⟩ will be used to denote a canonical scalar product in a finite dimen-

sional space of vectors or matrices, whilst in the case of infinite dimen-
sional spaces it will stand for the duality bracket.

• The double distributional divergence div2 of a matrix measure σ ∈
M(Rd;Sd×d) is an element of D′(Rd) that is defined as follows:

div2σ = f in D′(Rd) ⇔
ˆ 〈

∇2φ, σ
〉

= ⟨φ, f⟩ ∀φ ∈ D(Rd).

• Given a tensor-valued measure σ ∈ M(Rd;Sd×d),
´
ρ0(σ) will denote the

integral in the sense of the Goffman-Serrin convention [19], namely,ˆ
ρ0(σ) :=

ˆ
ρ0
(dσ
dθ

)
dθ,

where θ is any non-negative Radon measure θ ∈ M+(Rd) such that
σ ≪ θ. Due to the one-homogeneity of ρ0, the above expression does not
depend on θ.

2. Preliminaries

2.1. The classical duality framework. The duality theory involving the
linear constrained problem I(f) in (1.4) and the general Beckmann formu-
lation (1.5) is well understood in the case of the Hessian operator as far as
we are confined in a bounded domain Ω ⊂ Rd and when ϱ is any norm on
Sd×d, see for instance [9]. Since we are concerned with the case Ω = Rd,
some specific functional spaces will prove useful in showing the existence of
solutions as well as in the duality arguments. Therefore, in addition to the
general notations given in the introduction, for p ≥ 1 we introduce:

- Mp(Rd), the space of Borel signed measures µ on Rd such that
´

(1 +

|x|p) |µ|(dx) < +∞. Then, Pp(Rd) denotes the subset of Mp(Rd) consist-
ing of probability measures with finite p-moment. The definition extends
naturally to Mp(Rd;E), where E is a finite dimensional normed vector
space.

- Xp(Rd), the set of continuous functions u ∈ C0(Rd) such that ∥u∥Xp :=

sup |u(x)|
1+|x|p < +∞. The closed subspace Xp,0(Rd), consisting of those u

such that lim|x|→+∞
|u(x)|
1+|x|p = 0, is a separable Banach space.

A pairing between Xp(Rd) and Mp(Rd) is defined by ⟨u, µ⟩ =
´
Rd u dµ.

Noticing that Xp,0(Rd) = (1 + | · |p)C0, it is easy to see that the topological

dual of Xp,0(Rd) can be identified with Mp(Rd) through this duality bracket.
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As a consequence of the dominated convergence theorem, we have a useful
convergence criterium for a sequence (vn) in Xp(Rd), namely:

sup
n

∥vn∥Xp < +∞ and lim
n→∞

vn(x) = 0 ∀x ∈ Rd (2.1)

⇒ ⟨vn, µ⟩ → 0 ∀µ ∈ Mp(Rd).

The next result applies to general first-order distributional source terms
of the kind f = f0−divF , where (f0, F ) is any pair in M2(Rd)×M1(Rd;Rd)
such that the following balance condition is met:ˆ

f0 = 0,

ˆ
xf0 +

ˆ
F = 0. (2.2)

The two conditions mean that f is orthogonal to affine functions, which is
clearly necessary for the finiteness of

I(f) = sup
{
⟨u, f⟩ : u ∈ C1,1(Rd), lip(∇u) ≤ 1

}
. (2.3)

We recall the dual problem that we have named the second-order Beckmann
formulation:

I ′(f) = inf

{ˆ
ϱ0(σ) : σ ∈ M(Rd;Sd×d), div2σ = f in D′(Rd)

}
, (2.4)

where
´
ϱ0(σ) is intended in the sense of convex one-homogeneous function-

als on measures [19].

Proposition 2.1. Assume that f given as above satisfies (2.2). Let ϱ be
any norm on Sd×d and ϱ0 its polar defined by (1.6). Then, the supremum
in (2.3) and the infimum in (2.4) are reached. Furthermore, we have the
equality

I(f) = I ′(f). (2.5)

Proof. We begin by proving the existence of a maximizer for (2.3). By the
orthogonality conditions (2.2), we may restrict the supremum to functions
u belonging to the subset

K0 :=
{
u ∈ C1,1(Rd) : lip(∇u) ≤ 1, u(0) = 0, ∇u(0) = 0

}
.

Let (un) be a maximizing sequence in K0. Then, |un(x)| ≤ 1
2 |x|

2 and
|∇un(x)| ≤ |x|. By applying Arzela-Ascoli theorem, we can assume that
(un,∇un) → (u,∇u) uniformly on compact subsets, where u is a suitable
element of K0. To prove that u is optimal, we only need to check that
⟨un, f⟩ → ⟨u, f⟩, which, due to the particular form of f , reduces to showing
that

⟨un − u, f0⟩ → 0, ⟨∇(un − u), F ⟩ → 0.

Put vn = un − u. Then, (vn∇vn) → (0, 0) pointwisely, while |vn(x)| ≤
|x|2 and |∇vn(x)| ≤ 2|x|. Therefore, (vn,∇vn) is bounded in X2(Rd) ×
X1(Rd;Rd), and the convergence criterium (2.1) applies.
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The existence of a minimal σ in (2.4) follows from the direct method. In-
deed, the convex functional σ ∈ M(Rd;Sd×d) 7→

´
ϱ0(σ) is coercive (hence

inf-compact for the weak-* topology of M(Rd;Sd×d)), while the distribu-
tional constraint div2σ = f is weakly-* closed.

We now prove the equality (2.5) within two steps.
Step 1: I(f) ≤ I ′(f). It is enough to prove the following inequality:

⟨u, f⟩ ≤
ˆ
ϱ0(σ) for every (u, σ) ∈ K0 × Sf , (2.6)

where Sf :=
{
σ ∈ M(Rd;Sd×d) : div2σ = f in D′(Rd)

}
.

First we observe that we need only to show (2.6) for u ∈ K0∩C∞. Indeed,
we may approximate any u ∈ K0 by the convolution un = u ⋆ ρn, where
ρn = ndρ(nx) is a sequence of mollifiers (ρ ∈ D(Rd;R+), and

´
ρ = 1).

Then, lip(∇un) ≤ lip(∇u) ≤ 1, and, therefore, the sequence (un,∇un) is
bounded in X2(Rd) ×X1(Rd;Rd). The convergence ⟨un, f⟩ → ⟨u, f⟩ can be
obtained by applying once more the criterium (2.1) to vn = un − u and to
∇vn.

Let us now consider an element u ∈ K0∩C∞ and a generic σ ∈ Sf . Then,
recalling (1.6), we haveˆ 〈

∇2u, σ
〉
≤
ˆ
ϱ(∇2u) ϱ0(σ) ≤

ˆ
ϱ0(σ) < +∞.

Then, our claim (2.6) follows from Lemma B.1 (see Appendix B) which
states thatˆ 〈

∇2u, σ
〉

= ⟨u, f⟩ = ⟨u, f0⟩ + ⟨∇u, F ⟩ ∀σ ∈ Sf . (2.7)

This concludes Step 1.

Step 2: I(f) ≥ I ′(f). We are going to show the equality

Ireg(f) := sup
{
⟨u, f⟩ : u ∈ D(Rd), lip(∇u) ≤ 1

}
= I ′(f).

Clearly, Ireg(f) is not larger than I(f) and, thanks to Step 1, the equality
above will imply that the three quantities coincide1. We introduce the value
function h : C0(Rd;Sd×d) → R ∪ {+∞} defined by:

h(ζ) := inf
{
− ⟨u, f⟩ : u ∈ D(Rd), ϱ(∇2u+ ζ) ≤ 1

}
,

with h(ζ) = +∞ if no admissible u exists. Then, h is a proper convex
functional such that h(ζ) ≤ 0 whenever supx ϱ

(
ζ(x)

)
≤ 1 (u = 0 is then an

admissible competitor). It follows that h is continuous at 0 (with respect
to the norm topology of C0(Rd;Sd×d)), where it takes the value h(0) =
−Ireg(f). By the classical result of convex analysis (see Appendix A), it
holds that

h(0) = h∗∗(0) = −minh∗.

1unfortunately, we were unable to find a direct approximation of an admissible u by a
sequence (un) of compactly supported functions such that lip(∇un) ≤ 1.
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Then, the wished equality Ireg(f) = I ′(f) will follow if we can identify the
convex conjugate of h as

h∗(σ) =

ˆ
ϱ0(σ) if div2σ = f in D′(Rd), h∗(σ) = +∞ otherwise.

(2.8)
For σ ∈ M(Rd;Sd×d) we compute:

h∗(σ) = sup
ζ∈C0(Rd;Sd×d)

{⟨ζ, σ⟩ − h(ζ)}

= sup
u∈D(Rd)

sup
ζ∈C0(Rd;Sd×d)

{
⟨ζ, σ⟩ + ⟨u, f⟩ : ϱ(∇2u+ ζ) ≤ 1

}
= sup

u∈D(Rd)

sup
χ∈C0(Rd;Sd×d)

{
⟨χ, σ⟩ −

〈
∇2u, σ

〉
+ ⟨u, f⟩ : ϱ(χ) ≤ 1

}
=

ˆ
ϱ0(σ) + sup

u∈D(Rd)

{
−
〈
∇2u, σ

〉
+ ⟨u, f⟩

}
,

where:

- in the third line, we changed variable to χ = ∇2u + ζ which runs
over the whole C0(Rd;Sd×d);

- in the last line, for fixed u, we have taken the supremum with respect
to χ recovering

´
ϱ0(σ) which agrees with the support function of

the subset {χ ∈ C0(Rd;Sd×d) : ϱ(χ) ≤ 1}, see [11].

The finiteness of h∗(σ) implies that ⟨u, f⟩ =
〈
∇2u, σ

〉
for every u ∈ D(Rd),

meaning that div2σ = f in D′(Rd). This proves (2.8) and concludes Step 2.
The proof of Proposition 2.1 is complete. □

2.2. Convex order and martingale transport. Stochastic ordering
plays an important role in probability theory as a tool for comparing random
variables through their probability laws. Here, we are concerned specifically
with the convex order between measures in Mp(Rd;R+) (p ∈ {1, 2}). To any

measure µ ∈ M1(Rd;R+) we associate its total mass ∥µ∥ and its barycentre
[µ] given by:

∥µ∥ =

ˆ
µ, [µ] =

1

∥µ∥

ˆ
xµ(dx).

Definition 2.2. Given two non-negative measures µ, ν in M1(Rd;R+), we
say that ν dominates µ in the sense of convex order, in short ν ⪰c µ, if for
every convex function φ : Rd → R there holds the inequalityˆ

φdν ≥
ˆ
φdµ. (2.9)

By the Moreau-Yosida infimal convolution technique, we know that any
convex lower semi-continuous function φ : Rd → R ∪ +∞ is the non-
decreasing limit of a sequence of convex Lipschitz continuous functions.
Therefore, in order to show that ν ⪰c µ, the inequality (2.9) needs to
be checked for convex Lipschitz continuous functions only. If it is the
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case, then (2.9) automatically extends to any convex lower semi-continuous
φ : Rd → R ∪ {+∞}.

The following properties are straightforward.

• By testing (2.9) with affine functions (which are integrable), we see
that

ν ⪰c µ ⇒ ∥µ∥ = ∥ν∥, and [µ] = [ν].

• µ ⪰c δ[µ] (Jensen’s inequality).

The next characterization of the convex order is crucial. Beforehand, let
us recall that for any coupling measure γ ∈ Γ(µ, ν) there exists a unique
disintegration of the form γ = µ⊗ γx (see the notation (1.22)), where x 7→
γx ∈ P(Rd) is a µ-measurable mapping, cf. for instance Section 2.5 in [2].
By the set of martingale transport plans MT (µ, ν) we understand the family
of those couplings γ ∈ Γ(µ, ν) whose disintegration satisfies the condition
[γx] = x µ-a.e. It turns out that the set MT (µ, ν) is non-empty if and only
if ν ⪰c µ. This fact is a direct corollary of the Strassen theorem [31]:

Theorem 2.3 (Strassen). The convex order ν ⪰c µ holds true if and only
if there exists a µ-measurable map x 7→ px ∈ P1(Rd) such that:

(i) [px] = x µ-a.e.,
(ii) ν(B) =

´
px(B)µ(dx) for any Borel set B ⊂ Rd.

Some straightforward consequences of Strassen theorem for measures µ, ν ∈
P2(Rd) are listed below:

(p1) Assume that ν ⪰c µ. Then, var(ν) ≥ var(µ), while strict inequality
holds unless µ = ν. Indeed, assuming that [µ] = 0, for px such that
ν =
´
px µ(dx) with [px] = x µ-a.e., we have

var(ν) − var(µ) =

ˆ (〈
| · |2, px

〉
− |x|2

)
µ(dx),

which is positive unless the Jensen’s inequality
〈
| · |2, px

〉
≥ |x|2 is an

equality for µ-a.e. x. By the strict convexity of | · |2, this is possible
only if px = δx, hence, if ν = µ.

(p2) Assume that [ν] = 0, and take the convolution ρ = µ ⋆ ν. Then, it
holds that ρ ⪰c µ. Indeed, ρ =

´
px µ(dx) where px := (id + x)#ν

satisfies the condition [px] = x (id is the identity map). Thanks
to this property, one can check (see [25]) that, for centred Gauss-
ian distributions ρ, µ on Rd with the respective covariance matrices
R,M ∈ Sd×d+ , the condition ρ ⪰c µ reduces to the order relation
R ≥M in the sense of quadratic forms.

Finally, we point out that optimal transport problems under the mar-
tingale constraint of the kind inf

{˜
c(x, y) γ(dxdy) : γ ∈MT (µ, ν)

}
are

considered in the literature, most often for the cost c(x, y) = |x − y|p with
p ≥ 1, see for instance [1, 33, 20, 18]. A peculiarity of the quadratic cost
p = 2 is that, for ν ⪰c µ, the infimum above is reached by any γ ∈MT (µ, ν)
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since the total cost remains constant and equal to var(ν) − var(µ) on this
subset. This fact will manifest itself in the proof of Theorem 1.3.

3. Proofs

A quite technical direct proof of Theorem 1.1 could be derived by lever-
aging the Le Gruyer’s three-point characterization (1.14) of the feasible set
{u ∈ C1,1 : lip(∇u) ≤ 1} (see [21] for more details on this characteriza-
tion). However, as we aim to emphasize the important link between our
initial problem and stochastic optimization under convex order dominance,
we choose here to deal first with the proof of Theorem 1.3. After that, our
main result in Theorem 1.1 and its Corollary 1.2 will follow smoothly.

In the whole section we assume that µ, ν are centred probability measures
in P2(R2). Fixing the zero barycentre [µ] = [ν] = 0 is not restrictive since
all the problems considered herein are translation invariant.

3.1. Dualization of the minimal variance problem and optimality
conditions. Let us rewrite V(µ, ν) defined in (1.21) in the form V(µ, ν) =
inf

{
var(ρ) : ρ ∈ A(µ, ν)

}
where

A(µ, ν) :=
{
ρ ∈ P2(Rd) : ρ ⪰c µ, ρ ⪰c ν

}
. (3.1)

By the properties (p1), (p2) that conclude Section 2.2, we know that ρ = µ⋆ν
belongs to A(µ, ν), whence:

max
{

var(µ), var(ν)
}

≤ V(µ, ν) ≤ var(µ) + var(ν). (3.2)

Next, we consider the dual variational problem that involves pairs (φ,ψ) of
convex functions. Let K be the set of convex functions that are in C1,1(Rd).
Note that we have K ⊂ X2(Rd). Then, we set

V ′(µ, ν) = sup

{ˆ
φdµ+

ˆ
ψ dν : (φ,ψ) ∈ F

}
(3.3)

where F :=
{

(φ,ψ) ∈ K2 : φ+ ψ ≤ | · |2
}

.

Proposition 3.1. There exists an optimal ρ for (1.21), and we have the
no-gap equality

V(µ, ν) = V ′(µ, ν).

Furthermore, ρ ∈ A(µ, ν) and (φ,ψ) ∈ F are optimal for (1.21) and (3.3),
respectively, if and only if the following optimality conditions are fulfilled:{

(i) φ+ ψ = | · |2 ρ-a.e.,

(ii)
´
φdρ =

´
φdµ,

´
ψ dρ =

´
ψ dν.

(3.4)

Remark 3.2. The existence issue for V ′(µ, ν) is not straightforward. In
fact, optimal pairs (φ,ψ) ∈ F will be deduced from the solutions to (1.7)
by means of Proposition 3.6 in Section 3.3.
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Proof. We start by proving that (1.21) admits solutions. By (3.2), there
exists a minimizing sequence (ρn) in A(µ, ν) such that var(ρn) → V(µ, ν) <
+∞. Then, (ρn) is bounded in M2(Rd) and, up to extracting a subsequence,

we have ρn
∗
⇀ρ in the duality between X2,0(Rd) and M2(Rd). Therefore, as

ρn ∈ A(µ, ν), by passing to the limit n → ∞, the convex order relations´
φdρ ≥ max{

´
φdµ,

´
φdν} are deduced for convex Lipschitz continuous

functions φ since they belong to X2,0(Rd). As pointed out below Definition
2.2, this is enough to ensure that ρ ∈ A(µ, ν). The optimality of ρ follows
since V(µ, ν) = lim infn var(ρn) ≥ var(ρ).

Next, we prove the equality V(µ, ν) = V ′(µ, ν). Notice that the inequality
V(µ, ν) ≥ V ′(µ, ν) is straightforward since for every admissible

(
ρ, (φ,ψ)

)
we have ˆ

φdµ+

ˆ
ψ dν ≤

ˆ
φdρ+

ˆ
ψ dρ ≤

ˆ
| · |2dρ. (3.5)

To show the opposite inequality, we introduce the perturbation function
h : X2,0(Rd) → R ∪ {+∞} defined by

h(χ) := inf

{
−
(ˆ

φdµ+

ˆ
ψ dν

)
: (φ,ψ) ∈ K2, φ+ ψ + χ ≤ | · |2

}
.

We see that h(0) = −V ′(µ, ν) is finite, while the function h is convex. More-
over, by taking φ = ψ = −1

2 as a competitor, we have h(χ) ≤ 1 whenever

χ ≤ 1 + | · |2. Thus, h has a finite upper bound on the unit ball in the
Banach space X2,0(Rd). Therefore, h is continuous at 0 and, by Appendix
A, it holds that h(0) = h∗∗(0) = −minh∗, where h∗ denotes the Fenchel
conjugate of h on the dual space M2(Rd). The asserted equality will follow
if we can prove that

h∗(ρ) = var(ρ) if ρ ∈ A(µ, ν), h∗(ρ) = +∞ otherwise. (3.6)

Let us compute

h∗(ρ) = sup
(φ,ψ)∈K2

χ∈X2,0(Rd)

{ˆ
χdρ+

ˆ
φdµ+

ˆ
ψ dν : φ+ ψ + χ ≤ | · |2

}
.

Clearly, one has h∗(ρ) ≤ var(ρ) =
´
|z|2ρ(dz) if ρ ∈ A(µ, ν), and h∗(ρ) =

+∞ when ρ is not positive. Assuming now that ρ ≥ 0, we look for the
lower bound for h∗ by restricting the supremum above to pairs (φ,ψ) ∈ K2

which are Lipschitz continuous. Fixing such a pair, we see that the function
χ(z) := |z|2 − φ(z) − ψ(z) belongs to X2(Rd) and it is positive for large |z|.
By truncation, it can be approximated by a sequence χn ∈ C0(Rd) such that
χn → χ increasingly, and supn ∥χn∥X2(Rd) < +∞. Since χn + φ+ ψ ≤ | · |2,
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after certain manipulations we are led to2

h∗(ρ) ≥
ˆ

(χn + φ+ ψ) dρ+

(ˆ
φdµ−

ˆ
φdρ

)
+

(ˆ
ψ dν −

ˆ
ψ dρ

)
.

Then, passing to the limit as n→ ∞ (see (2.1)), we get the inequality

h∗(ρ) ≥
ˆ

|z|2 dρ+

(ˆ
φdµ−

ˆ
φdρ

)
+

(ˆ
ψ dν −

ˆ
φdρ

)
,

which holds true for every pair of convex Lipschitz continuous functions
(φ,ψ). Therefore, the finiteness of h∗(ρ) implies that ρ dominates µ and ν
in the convex order. In this case, we infer that ρ ∈ A(µ, ν) (in particular
[ρ] = 0), while h∗(ρ) ≥

´
|z|2 dρ = var(ρ). This proves our claim (3.6), hence

the equality V(µ, ν) = V ′(µ, ν).
We see now that a pair

(
ρ, (φ,ψ)

)
∈ A(µ, ν) ×F is optimal if and only if

the inequalities in (3.5) are equalities. In turn, these equalities are equivalent
to the conditions (i), (ii) stated in Proposition 3.1. □

3.2. Convex-order characterization of the admissible set Σ(µ, ν).
The proof of Theorem 1.3 will rely on the relation between the admissible
subset Σ(µ, ν) for the optimal transport problem (1.10) and the admissible
subset A(µ, ν) for (1.21). This relation is illuminated by the following result:

Lemma 3.3. Let π ∈ P2((Rd)3) be a 3-plan with marginals (µ, ν, ρ). De-

fine the marginals π1,3 := Π#
1,3(π) and π2,3 := Π#

2,3(π), which are the push

forwards of π(dxdydz) through the projection maps (x, y, z) → (x, z) and
(x, y, z) → (y, z), respectively. Then,

π ∈ Σ(µ, ν) ⇔

{
π1,3 ∈MT (µ, ρ),

π2,3 ∈MT (ν, ρ).
(3.7)

Accordingly, we obtain the equality

A(µ, ν) =
{
ρ ∈ P2(Rd) : ∃π ∈ Σ(µ, ν), Π#

3 (π) = ρ
}
. (3.8)

Proof. Upon recalling the equilibrium conditions (1.11) which characterize
the convex subset Σ(µ, ν), checking the equivalence (3.7) amounts to veri-
fying the two equivalences:˚

⟨z − x,Φ(x)⟩π(dxdydz) = 0 ∀Φ ∈ C0(Rd;Rd) ⇔ π1,3 ∈MT (µ, ρ),
˚

⟨z − y,Ψ(y)⟩π(dxdydz) = 0 ∀Ψ ∈ C0(Rd;Rd) ⇔ π2,3 ∈MT (ν, ρ).

Let us prove the first equivalence; the proof of the second one is similar and
will be skipped. We consider the disintegration π1,3(dxdz) = µ(dx)⊗px(dz),

2all integrals involved below are finite since Lipschitz continuous functions belong to
X2(Rd)
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which gives:˚
⟨z − x,Φ(x)⟩π(dxdydz) =

¨
⟨z − x,Φ(x)⟩π1,3(dxdz)

=

ˆ (ˆ
⟨z − x,Φ(x)⟩ px(dz)

)
µ(dx)

=

ˆ
⟨[px] − x,Φ(x)⟩µ(dx).

Clearly, these integrals vanish for every Φ ∈ C0(Rd;Rd) if and only if [px] = x
holds µ-a.e. This is exactly the martingale condition that characterizes
π1,3 ∈MT (µ, ρ).

Let us now prove the equality (3.8). By (3.7), the condition π ∈ Σ(µ, ν)
implies that ρ ∈ A(µ, ν). Conversely, if ρ ⪰ µ and ρ ⪰ ν, Strassen theorem
ensures the existence of martingale transports γ1,3 ∈ MT (µ, ρ) and γ2,3 ∈
MT (ν, ρ). Then, we can recover an element π ∈ Σ(µ, ν) with ρ for its third
marginal by using a gluing construction between γ1,3 and γ2,3. A simple
one (it is not unique) is as follows. Let us consider the disintegrations of
the measures γi,3 (i ∈ {1, 2}) with respect to their second marginal ρ. This

gives ρ-measurable families {pzi } in P(Rd) such that

γ1,3(dxdz) =

ˆ (
pz1(dx) ⊗ δξ(dz)

)
ρ(dξ),

γ2,3(dydz) =

ˆ (
pz2(dy) ⊗ δξ(dz)

)
ρ(dξ).

Then, it is easy to check that the measure π(dxdydz) =
´ (
pz1(dx)⊗pz2(dy)

)
⊗

δξ(dz) ρ(dξ) has (µ, ν, ρ) for its marginals, and it satisfies πi,3 := Π#
i,3(π) =

γi,3. □

3.3. Prove of the equality V ′(µ, ν) = I(ν−µ)+ 1
2

(
var(µ)+var(ν)

)
. First,

we recall a classical result that establishes a connection between the bounds
on the Hessian and the convexity properties.

Lemma 3.4. For any continuous function u : Rd → R the following condi-
tions are equivalent:

(i) u ∈ C1,1(Rd) and lip(∇u) ≤ 1;

(ii) u ∈W 2,∞
loc (Rd) and −Id ≤ ∇2u ≤ Id a.e. in Rd;

(iii) both functions 1
2 | · |

2 + u and 1
2 | · |

2 − u are convex.

Next, we consider the subclass G ⊂ C0(Rd) consisting of continuous func-
tions φ such that | · |2 − φ admits an affine minorant. Note that φ ∈ G if

and only if φ(x) ≤ |x− x0|2 + b for a suitable pair (x0, b) ∈ Rd×R+. Then,
we introduce the transform L : φ ∈ G → φ̂ ∈ G defined by:

Lφ = φ̂ where φ̂(x) := |x|2 − (| · |2 − φ)∗∗(x). (3.9)
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Below we show that L preserves convexity while adding smoothness. This is
a rephrase of the fact that taking convex envelope preserves semi-concavity.
The following result essentially reproduces Theorem 2.3 in [3].

Lemma 3.5. The transform L enjoys the following properties:

(i) Lφ ≥ φ, while Lφ ≡ φ if and only if | · |2 − φ is convex;
(ii) L ◦ L = L (idempotence);

(iii) If φ is convex, then φ̂ := Lφ is convex and C1,1, whilst u := 1
2 | · |

2−φ̂
satisfies lip(∇u) ≤ 1.

Proof. The first two properties are straightforward. In order to show that φ̂
is convex, we need only to check the Jensen’s inequality

´
φ̂(z+ ξ) p0(dξ) ≥

φ̂(z) for every centred finitely supported probability p0 and for any z ∈ Rd.
In view of the particular form of φ̂ given in (3.9), this amounts to showing
that ˆ

(| · |2 − φ)∗∗(z + ξ) p0(dξ) ≤ (| · |2 − φ)∗∗(z) + var(p0). (3.10)

To prove (3.10), we fix ε > 0 and choose a finitely supported probability pz

such that [pz] = z and

(| · |2 − φ)∗∗(z) ≥
ˆ (

|ζ|2 − φ(ζ)
)
pz(dζ) − ε.

Then, by applying Jensen’s inequality to (| · |2−φ)∗∗ (which is majorized by

| · |2 − φ), we infer that for every ξ ∈ Rd we have

(| · |2−φ)∗∗(z + ξ) − (| · |2 − φ)∗∗(z)

≤
ˆ ((

|ζ + ξ|2 − φ(ζ + ξ)
)
−
(
|ζ|2 − φ(ζ)

))
pz(dζ) + ε

= |ξ|2 − 2⟨z, ξ⟩ −
ˆ (

φ(ζ + ξ) − φ(ζ)
)
pz(dζ) + ε .

By integrating with respect to the centred measure p0(dξ) and by Fubini
theorem, we deduce that:ˆ

(| · |2−φ)∗∗(z + ξ) p0(dξ) − (| · |2 − φ)∗∗(z)

≤ var(p0) + ε−
¨ (

φ(ζ + ξ) − φ(ζ)
)
pz(dζ) ⊗ p0(dξ)

= var(p0) + ε−
ˆ (ˆ (

φ(ζ + ξ) − φ(ζ)
)
p0(dξ)

)
pz(dζ)

≤ var(p0) + ε.

Let us point out that, in order to reach the last line above, we used the con-
vexity of φ, which, by Jensen’s inequality, renders the integral with respect
to p0(dξ) non-negative. Since ε can be chosen arbitrarily small, we get our
claim (3.10), hence the convexity of φ̂.
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To complete the proof of the assertion (iii), we observe that the function

u = 1
2 | · |

2− φ̂ is such that 1
2 | · |

2−u = φ̂ and 1
2 | · |

2 +u = (| · |2−φ)∗∗, which
are convex functions. By virtue of Lemma 3.4, it follows that u (hence also
φ̂) is C1,1, and there also holds lip(∇u) ≤ 1. □

Proposition 3.6. Let u be a solution to (1.7). Then, the pair of convex
function (φ,ψ) given by

φ =
1

2
| · |2 − u, ψ =

1

2
| · |2 + u (3.11)

solves the maximization problem (3.3). Accordingly, we have the equality

I(ν − µ) +
1

2

(
var(µ) + var(ν)

)
= V ′(µ, ν).

Proof. Since u is C1,1 with lip(∇u) ≤ 1, the pair of functions (φ,ψ) given
by (3.11) belongs to the class F of admissible competitors for (3.3), thanks
to the equivalence stated in Lemma 3.4. Therefore,

I(ν − µ) =

ˆ
u dν −

ˆ
u dµ

=

ˆ
φdµ+

ˆ
ψ dν − var(µ)+var(ν)

2

≤ V ′(µ, ν) − var(µ)+var(ν)
2 .

Thus, we are done if we can prove the converse inequality, namely

V ′(µ, ν) ≤ I(ν − µ) +
1

2

(
var(µ) + var(ν)

)
. (3.12)

Let (φ,ψ) ∈ F be any admissible pair for (3.3). Since the convex continuous
function ψ admits an affine minorant, the inequality ψ ≤ | · |2 − φ implies
that ψ = ψ∗∗ ≤ (| · |2 − φ)∗∗, while φ belongs to the subclass G on which
the L-transform is well defined. By virtue of Lemma 3.5, φ̂ := Lφ is convex
and satisfies φ̂ ≥ φ. Therefore, it holds thatˆ
φdµ+

ˆ
ψ dν ≤

ˆ
φ̂ dµ+

ˆ
(| · |2 −φ)∗∗ dν =

ˆ
φ̂ dµ+

ˆ
(| · |2 − φ̂) dν.

In terms of u := 1
2 | · |

2 − φ̂, the latter inequality can be rewritten as follows:ˆ
φdµ+

ˆ
ψ dν ≤

ˆ
u dν −

ˆ
u dµ +

1

2

(
var(µ) + var(ν)

)
.

By the assertion (iii) of Lemma 3.5, u is an admissible competitor for (1.7),
hence

´
u dν −

´
u dµ ≤ I(ν − µ). This gives the following upper bound:ˆ

φdµ+

ˆ
ψ dν ≤ I(ν − µ) +

1

2

(
var(µ) + var(ν)

)
.

The desired inequality (3.12) is obtained by taking the supremum with re-
spect to all pairs (φ,ψ) ∈ F . □
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Remark 3.7. Given an admissible pair (φ,ψ) ∈ F , we can define two

bivariate functions φ̃(x, z) := φ(x) + ⟨∇φ(x), z − x⟩ and ψ̃(y, z) := ψ(y) +
⟨∇ψ(y), z − y⟩. By the convexity assumptions, we have φ(z) ≥ φ̃(x, z) and

ψ(z) ≥ ψ̃(y, z), hence the inequality

φ(x) + ⟨∇φ(x), z − x⟩ + ψ(y) + ⟨∇ψ(y), z − y⟩ ≤ |z|2 (3.13)

∀ (x, y, z) ∈ (Rd)3.

Take u ∈ C1,1(Rd) such that lip(∇u) ≤ 1. By applying (3.13) to (φ,ψ) =
(12 | · |

2 − u, 12 | · |
2 + u) which belongs to F (see Lemma 3.4), we recover the

following three-point inequality

[u(y) + ⟨∇u(y), z − y⟩] − [u(x) + ⟨∇u(x), z − x⟩] ≤ c(x, y, z), (3.14)

recall that c(x, y, z) = 1
2(|z − x|2 + |z − y|2). As pointed out in the intro-

duction, this inequality characterizes the admissibility of u for (1.7).

3.4. Proof of Theorem 1.3. By Proposition 3.1 and Proposition 3.6, we
already know that

I(ν − µ) +
1

2

(
var(µ) + var(ν)

)
= V ′(µ, ν) = V(µ, ν).

Therefore, it remains to check that the infimum J (µ, ν) in the three-
marginal optimal transport problem (1.10) satisfies the equality

J (µ, ν) = V(µ, ν) − 1

2

(
var(µ) + var(ν)

)
. (3.15)

Let π ∈ Σ(µ, ν) be a competitor for (1.10), and let ρ be its third
marginal. Then, by Lemma 3.7, we know that ρ ∈ A(µ, ν), while˝

⟨z − x, x⟩π(dxdydz) =
˝

⟨z − y, y⟩π(dxdydz) = 0 by particularizing
the equilibrium condition (1.11) for Φ = Ψ = id. Thus, recalling the for-
mula for the cost c(x, y, z) = 1

2(|z − x|2 + |z − y|2), we have:
˚

c(x, y, z)π(dxdydz)

=
1

2

(
var(µ) + var(ν)

)
+ var(ρ) −

˚
⟨z, x+ y⟩π(dxdydz)

= var(ρ) − 1

2

(
var(µ) + var(ν)

)
.

The equality (3.15) then follows from (3.8) by noticing that taking the in-
fimum with respect to π ∈ Σ(µ, ν) on the left hand side above amounts
to taking the infimum with respect to ρ ∈ A(µ, ν) in the last line. As
a consequence, we see that

˝
c(x, y, z)π(dxdydz) = J (µ, ν) if only if

var(ρ) = V(µ, ν). That proves the assertion (i) of Theorem 1.3. The as-
sertion (ii) is a direct consequence of Proposition 3.1 (existence of optimal
ρ) and of (3.8) (existence of π ∈ Σ(µ, ν) with the third marginal ρ). □
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3.5. Proof of Theorem 1.1. The equality I(f) = J (µ, ν) and the exis-
tence of an optimal π ∈ Σ(µ, ν) have been already established (see Theorem
1.3). The existence of an optimal u solving (1.7) follows from Proposition
2.5 applied to f = f0 = ν − µ. Before proving the assertion (ii), we recall
that if u is admissible for (1.7), then by integrating (3.14) with respect to
any π ∈ Σ(µ, ν) and by taking the relations (1.11) into account, we get˚

c(x, y, z)π(dxdydz)

≥
˚ (

[u(y) + ⟨∇u(y), z − y⟩] − [u(x) + ⟨∇u(x), z − x⟩]
)
π(dxdydz)

=

ˆ
u dν −

ˆ
u dµ.

Therefore, since I(ν − µ) = J (µ, ν), the optimality of (u, π) is equivalent
to the fact that the above inequality is an equality. In view of (3.14), this
happens if and only if the three-point condition (1.13) holds true π-a.e. □

3.6. Proof of Corollary 1.2. Let π ∈ Σ(µ, ν) be an admissible 3-plan for
(1.10), and let us consider the associated tensor valued measure, namely
σ =
˝

σx,y,z γ(dxdydz). We claim that:
ˆ
ϱ0(σ) ≤

˚
c(x, y, z)π(dxdydz), div2σ = ν − µ in D′(Rd) . (3.16)

Then, if π is optimal for (1.10), we will deduce that

I ′(ν − µ) (= min (1.8)) ≤
ˆ
ϱ0(σ) ≤

˚
c(x, y, z)π(dxdydz) = J (µ, ν),

hence the optimality of σ since we have I ′(ν − µ) = I(ν − µ) = J (µ, ν) by
virtue of Proposition 2.5 and Theorem 1.1.

Let us now prove (3.16). By the subadditivity property of the convex
one-homogenous functional M(Rd;Sd×d) ∋ σ 7→

´
ϱ0(σ), we have:

ˆ
ϱ0(σ) ≤

˚ (ˆ
ϱ0(σx,y,z)

)
π(dxdydz) ≤

˚
c(x, y, z)π(dxdydz).

Indeed, recalling the definition of the rank-one measure σx,y,z given in (1.15),
we have:ˆ
ϱ0(σx,y,z) ≤

ˆ

[z,x]

|ξ − z|H1(dξ)+

ˆ

[z,y]

|ξ − z|H1(dξ) =
1

2
(|x−z|2 + |y−z|2),

with the inequality being an equality if the segments [x, z] and [y, z] do not
overlap. Eventually, let us show that σ satisfies the distributional constraint
div2σ = ν − µ. Recalling that div2σx,y,z = fx,y,z, where fx,y,z := δy − δx −
div

(
(z− y) δy − (z−x) δx

)
(see (1.17)), for each test function φ ∈ D(Rd) we
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have〈
φ,div2σ

〉
=

˚ 〈
φ,div2σx,y,z

〉
π(dxdydz) =

˚
⟨φ, fx,y,z⟩π(dxdydz)

=

˚ (
φ(y) − φ(x) + ⟨∇φ(y), z − y⟩ − ⟨∇φ(x), z − x⟩

)
π(dxdydz)

=

ˆ
φdν −

ˆ
φdµ,

where the last equality relies on the relations (1.11). This proves our claim
(3.16), hence the first assertion of Corollary 1.2. Let us now consider the

marginal γ = π1,2 := Π#
1,2(π) of an admissible π ∈ Σ(µ, ν) with respect to

the first two coordinates. There is no loss of generality in assuming that˝
c dπ < +∞, which allows to deduce that π ∈ P2((Rd)3). Then, there

exists a γ-measurable family {πx,y} in P2(Rd) satisfying the disintegration
formula π(dxdydz) = γ(dxdy)⊗πx,y(dz), see the convention (1.22). It yields

˚
α(x, y, z)π(dxdydz) =

¨
⟨α(x, y, · ), πx,y⟩ γ(dxdy) ∀α ∈ X2((Rd)3).

Let us apply this formula to the following element of X2((Rd)3):

αu(x, y, z) := [u(y) + ⟨∇u(y), z − y⟩] − [u(x) + ⟨∇u(x), z − x⟩] − c(x, y, z),

where u is admissible for (1.7). By (3.14) we have αu ≤ 0, while, by virtue
of the second assertion of Theorem 1.1, αu = 0 holds π-a.e. whenever the
pair (u, π) is optimal. In this case, we get

0 =

˚
αu(x, y, z)π(dxdydz) =

¨
⟨αu(x, y, · ), πx,y⟩ γ(dxdy),

yielding that sp(πx,y) ⊂ {z : αu(x, y, z) = 0} for γ-almost all (x, y) ∈ (Rd)2.
Next, we show that the subset {αu(x, y, ·) = 0} reduces to the singleton
{zu(x, y)} where

zu(x, y) =
x+ y

2
+

∇u(y) −∇u(x)

2
. (3.17)

For fixed (x, y) the function z → αu(x, y, z) is strictly concave; hence, it
reaches its maximum on Rd at the unique point zu(x, y) where ∂zαu(x, y, z) =
∇u(y) −∇u(x) − (2z − (x + y)) vanishes. This furnishes (3.17). Since ∇u
is 1-Lipschitz, zu(x, y) belongs to the ball B(x+y2 , |x−y|2 ). Accordingly, any

optimal transport plan π is supported on (B(spµ, sp ν))3, so the associated
optimal tensor measure σ =

˝
σx,y,zdπ satisfies (1.19). The proof of the

assertion (ii) is now complete. □
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4. Examples

In this section we give exact solutions for some classes of data µ, ν. In
each case we propose a pair (u, π) and prove its optimality by checking the
optimality condition (ii) in Theorem 1.1. It turns out that, after checking the
three-point equality (1.13), the main challenge is to check the admissibility
conditions −Id ≤ ∇2u ≤ Id and π ∈ Σ(µ, ν). Once the optimality of
(u, π) is proved, an optimal convex dominant ρ is computed as the third
marginal of π, see Theorem 1.3. Meanwhile, according to the Corollary
1.2, a solution of the second-order Beckmann problem (1.8) of the form
σ =
˝

σx,y,z π(dxdydz) is derived.

4.1. Ordered measures. The simplest class of data is the one of µ, ν ∈
P2(Rd) that are in convex order. Let us assume that

µ ⪯c ν.

Then, for any martingale transport plan γ ∈ MT (µ, ν), an optimal pair
(u, π) is given by:

u(x) =
1

2
|x|2, π(dxdydz) = γ(dxdy) ⊗ δy(dz), (4.1)

see the convention (1.22). Recall that MT (µ, ν) is non-empty by virtue of
Strassen theorem.

Admissibility of u is clear, and π ∈ Σ(µ, ν) follows easily from Lemma
3.3. Due to the form of π, the three-point optimality condition (1.13) has
to be checked merely for the triples (x, y, z) with z = y. This is automatic
since u satisfies the identity3

u(y) − [u(x) + ⟨∇u(x), y − x⟩] =
1

2
|x− y|2 .

With the validated optimality of the pair (u, π), we can deduce the minimal
energy:

I(ν − µ) =

ˆ
u d(ν − µ) =

1

2

(
var(ν) − var(µ)

)
.

Moreover, the solution σ provided by Corollary 1.2 takes the form˜
σx,y,y γ(dxdy) where, by (1.15), σx,y,y is positive semi-definite, thus

σ ∈ M(Rd;Sd×d+ ). Eventually, in view of the property (p2) (in Section
2.2), we see that ρ = ν is the unique minimizer of the optimal convex domi-
nance problem V(µ, ν). In contrast, the solution σ to (1.8) is not unique, as
is shown in the following remark. Our argument will be based on the simple
criterium as follows:

Proposition 4.1. Assume that µ ⪯c ν. Then, a measure σ ∈ M(Rd;Sd×d)
satisfying the constraint div2σ = ν − µ solves the second-order Beckmann
problem (1.8) if and only if it is positive semi-definite.

3the left hand side is nothing else but the Bregman divergence of u at y around x
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Proof. Using the integration by parts formula (B.1), for any σ satisfying
div2σ = f = ν − µ, we haveˆ

ϱ0(σ) ≥
ˆ

⟨Id, σ⟩ =

ˆ 〈
∇2u, σ

〉
=

ˆ
u df = I(f).

By the zero-gap result (2.5), the tensor measure σ is optimal for (1.8) if and
only if

´
ϱ0(σ) = I(f). This means that the above inequality is an equality.

Noticing that ϱ0(A) = Tr(A) for A ∈ Sd×d implies that all the eigenvalues
of A are non-negative, we infer that an admissible σ is optimal if and only
if it is an element of M(Rd;Sd×d+ ). □

Remark 4.2 (the non-uniqueness issue). In general, even if ρ is unique, one
can expect that π given in (4.1) is not unique since there may exist multiple
martingale transports γ ∈ MT (µ, ν). In turn, this translates to possibly
multiple optimal tensor measures σ. In fact, we can exploit Proposition 4.1
to see that non-uniqueness of optimal σ goes beyond the one induced by the
non-uniqueness of π.

Let us consider the simple example when µ = δ0 and ν =
∑4

i=1
1
4δyi

where yi are corners of the square centred at the origin. Clearly µ ⪯c ν, and
γ =

∑4
i=1

1
4δ(0,yi) is the unique element of MT (µ, ν). It follows that Σ(µ, ν)

is a singleton, which gives uniqueness of optimal π. The induced minimizer
σ is the rank-one tensor measure defined as follows:

σ(dξ) =

˚
σx,y,z(dξ)π(dxdydz) =

4∑
i=1

|ξ − yi|
4

yi
|yi|

⊗ yi
|yi|

H1(dξ) [0, yi].

Such σ is demonstrated in Fig. 2(a). More accurately, the figure shows the
density of ϱ0(σ) with respect to H1 measure restricted to the four segments.

Meanwhile, the set of σ ≥ 0 for which div2σ = ν − µ is very rich. Figs
2(b,c) give examples of such measures. After Proposition 4.1, they are also
optimal for the second-order Beckmann problem (1.8). It is even possible
to find optimal σ that has an absolutely continuous part. This example not
only shows that we may experience great flexibility in the choice of optimal
σ but also that not every such optimal measure can be decomposed with
respect to a three-point measure π ∈ Σ(µ, ν) as in Corollary 1.2. This is
a significant difference with respect to the classical first-order Beckmann
problem where all minimizers can be decomposed along transport rays by
virtue of Smirnov theorem (see [30] and Proposition 2.3 in [16]).

4.2. Gaussian measures. In this example we assume the data to be two
centred Gaussian distributions on Rd:

µ = N (0,M), ν = N (0, N),

where M,N ∈ Sd×d+ are two positive semi-definite covariance matrices. Note
that if these matrices are ordered, we find ourselves in the framework of
the former example (see the comment after (p2) in Section 2.2). In the
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(a) (b) (c)

Figure 2. Various optimal σ (blue) for the data µ = δ0
(gray) and ν =

∑4
i=1

1
4δyi (black). Only the density of the

1D measure σ is displayed.

general case, at the core of the solution lies the spectral decomposition of
the difference of the covariance matrices:

N −M =

d∑
i=1

λi ai ⊗ ai,

where ai are mutually orthogonal vectors on the unit sphere Sd−1. Let us
define the projection matrices

P− :=
∑

{i :λi<0}

ai ⊗ ai, P+ :=
∑

{i :λi≥0}

ai ⊗ ai = Id − P−.

The following symmetric positive semi-definite matrices will prove to be
essential:

M ∨N := M + (N −M)+ = N + (M −N)+,

M ∧N := M − (M −N)+ = N − (N −M)+,

where

(N −M)+ =
d∑
i=1

(λi)+ai ⊗ ai, (M −N)+ =
d∑
i=1

(λi)− ai ⊗ ai.

According to Remark 4.3, M ∨N can be seen as the least majorant of the
matrices M,N , and M ∧N as their greatest minorant.

We are going to now show that an optimal pair (u, π) is given by

u(x) =
1

2

d∑
i=1

sgn(λi)⟨ai, x⟩2, π = γ(dxdy) ⊗ δzu(x,y)(dz),

where we agree to the convention that sgn(0) = 1, while

- the transport plan γ ∈ P(Rd × Rd) is a normal distribution

γ = N (0, G) , G =

[
M M ∧N

M ∧N N

]
;
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- the function zu is computed according to (1.18), which here leads to

zu(x, y) = P−x+ P+y.

The positive semi-definiteness of G is clear since M ∧ N is a minorant for

both M and N . Since ∇2u =
∑d

i=1 sgn(λi) ai ⊗ ai, feasibility of u is also
straightforward. In view of the disintegrated form of π, it is sufficient to
show that the equality (1.13) holds for every triple

(
x, y, zu(x, y)

)
where

(x, y) ranges in the whole (Rd)2. This reduces to a tedious but elementary
computation.

The more involved part is showing the admissibility π ∈ Σ(µ, ν). As the
first and second marginals of π coincide with those of γ, they are equal to
µ and ν, respectively. Thus, by virtue of Lemma 3.3, it is enough to show

that the marginals π1,3 := Π#
1,3(π) and π2,3 := Π#

2,3(π) are martingale plans.

Integrating against a test function ϕ ∈ C0(Rd × Rd), we obtain¨
ϕ(x, z)π1,3(dxdz) =

˚
ϕ(x, z)π(dxdydz) =

¨
ϕ
(
x, zu(x, y)

)
γ(dxdy)

=

¨
ϕ
(
x, x+ P+(y − x)

)
γ(dxdy) =

¨
ϕ(x, x+ z) γ̂(dxdz).

Above γ̂ is the push forward of γ through the map A(x, y) = (x, z) =
(x, P+(y − x)). As A is linear, it might be identified with a 2d× 2d matrix.
Accordingly, γ̂ is another Gaussian given by

γ̂ = N (0, Ĝ), Ĝ = AGA⊤ =

[
M 0
0 (N −M)+

]
.

Note that the matrix multiplication above is straightforward once we observe
that

(M ∧N)P+ = MP+, (M ∧N)P− = NP−.

The structure of the matrix Ĝ shows that γ̂ is a product of two Gaussians:
γ̂ = N (0,M) ⊗N (0, (N −M)+). We continue the chain of equalities¨

ϕ(x, z)π1,3(dxdz)

=

ˆ (ˆ
ϕ(x, x+ z)N

(
0, (N −M)+

)
(dz)

)
N (0,M)(dx)

=

ˆ (ˆ
ϕ(x, z)N

(
x, (N −M)+

)
(dz)

)
N (0,M)(dx),

in order to arrive at

π1,3(dxdz) = µ(dx) ⊗N
(
x, (N −M)+

)
(dz). (4.2)

It is clear that π1,3 is a martingale. In a similar way one shows that π2,3 =
ν ⊗N

(
y, (M −N)+

)
, which is also a martingale. We have thus proved that
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π ∈ Σ(µ, ν) and, ultimately, that (u, π) are optimal. The minimal energy
equals:

I(ν − µ) =

ˆ
u d(ν − µ) =

1

2

d∑
i=1

sgn(λi) ⟨N −M,ai ⊗ ai⟩ =
1

2
ϱ0(N −M).

To identify the optimal measure ρ we compute the third marginal of
π. Utilizing the disintegration formula (4.2) for π1,3 we find that it is a
convolution of two Gaussians:

ρ = π3 = µ ⋆N
(
0, (N −M)+

)
= N

(
0,M + (N −M)+

)
= N (0,M ∨N)

(note that we obtain the same result when computing the second marginal
of π2,3).

Remark 4.3. It is possible to show directly that ρ := N (0,M ∨ N) is a
solution to the minimal variance problem (1.21). Indeed, since ρ satisfies
the dominance constraints (cf. (p2) in Section 2.2), we have V(µ, ν) ≤
Tr(M ∨ N). In the opposite direction, any admissible ρ ∈ A(µ, ν) admits

a covariance matrix R ∈ Sd×d+ such that R ≥ M, R ≥ N . Therefore, since
var(ρ) = TrR, we have:

V(µ, ν) ≥ min
R∈Sd×d

+

{
TrR : R ≥M, R ≥ N

}
.

It is not difficult to check that the right hand side above is a semi-definite
program which admits a unique solution given by R = M ∨ N . The opti-
mality of ρ follows. Notice that, similarly, the matrix M ∧N uniquely solves
the analogous maximization problem where the convex order constraints are
reversed. In this sense, M ∨N is the least majorant of the matrices M,N ,
whilst M ∧N is their greatest minorant.

4.3. Two-point measures. The simplest non-trivial data possible is when
both measures are supported by two points:

µ =
2∑
i=1

µi δxi , ν =

2∑
j=1

νj δyj .

As the barycentres must coincide, the problem is virtually planar. We can
thus a priori assume that d = 2. In addition, we enforce that the four points
are not aligned so that 1D scenario is avoided.

As before, we assume that the measures are centred, i.e. [µ] = [ν] =
0. In this case x1 = −µ2

µ1
x2, y1 = −ν2

ν1
y2. Note that the weights follow

automatically from the positions:

µi =
|xi′ |

|x1| + |x2|
, νj =

|yj′ |
|y1| + |y2|

, (4.3)

where i′ = 3 − i, j′ = 3 − j.
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The main challenge lies in the fact that the type of the solution switches
depending on the geometrical property of the convex quadrilateral formed
by the points x1, y2, x2, y1. Indeed, the two cases below must be considered:

(A) the pairs of opposite edges of the quadrilateral are inclined at an
angle non-greater than π/2;

(B) the angle between one of the pairs of opposite edges exceeds π/2.

The pairs of lines extending the edges in questions are drawn in Fig. 3(a). In
fact, being in the scenario (A) is equivalent to the system of two inequalities:

⟨x2 − y2, y1 − x1⟩ ≥ 0, (4.4a)

⟨x1 − y2, y1 − x2⟩ ≥ 0. (4.4b)

It is worth emphasizing that at least one of those inequalities is always met.
Case (A)

To extent, this case is similar to the Gaussian example as again the spec-
tral decomposition of the difference of the covariance matrices will play the
central role. Defining M =

´
x ⊗ xµ(dx) and N =

´
y ⊗ y ν(dy) we can

make use of (4.3) to show that

M = −x1 ⊗ x2 = −x2 ⊗ x1, N = −y1 ⊗ y2 = −y2 ⊗ y1. (4.5)

Since we assumed that the four points are not collinear, the difference always
has two eigenvalues of opposite signs:

N −M = λa a⊗ a+ λb b⊗ b, λa < 0, λb > 0,

where a ⊥ b, and a, b ∈ S1. In what follows we prove that in the case (A)
the problems I(ν − µ) and J (µ, ν) are solved by, respectively,

u(x) =
1

2

(
⟨b, x⟩2 − ⟨a, x⟩2

)
, π =

2∑
i,j=1

γij δ(xi,yj ,zij), (4.6)

where

γij = µi
⟨b, yj′ − xi⟩
⟨b, yj′ − yj⟩

, zij = ⟨a, xi⟩ a+ ⟨b, yj⟩ b. (4.7)

We observe that zij = zu(xi, yj) = P−xi +P+yj for P− = a⊗ a, P+ = b⊗ b.
Accordingly, both admissibility of u and the three-point optimality condition
(1.13) can be shown identically as in Example 4.2. The biggest challenge
consists in showing that π ∈ Σ(µ, ν). In fact, it is the positivity of γij that is
the most delicate. The following result shows that it characterizes the case
(A):

Lemma 4.4. The inequalities (4.4) hold true if and only if γij ≥ 0 for all
i, j ∈ {1, 2}.

As the proof is rather long and technical, it is moved to Appendix C. We
can readily check that π ∈ Σ(µ, ν) relying on Lemma 3.3. The fact that the
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first marginal of π is µ amounts to observing that
∑2

j=1 γij = µi. Next, we
compute

π1,3 =

2∑
i,j=1

γij δ(xi,zij) =

2∑
i=1

µi δxi⊗ pi, pi :=

2∑
j=1

⟨b, yj′ − xi⟩
⟨b, yj′ − yj⟩

δzij .

Noting that zij = xi+⟨b, yj − xi⟩ b, it is easy to show that [pi] = xi, rendering
π1,3 a martingale.

To show that π2 = ν and that π2,3 is martingale as well, we derive an
alternative formula for γij that is symmetric to (4.7). First, observe that

µi =
⟨a,xi′ ⟩

⟨a,xi′−xi⟩
thanks to (4.3). This starts the chain of equalities below in

which we exploit the equality ⟨a⊗ b,M⟩ = ⟨a⊗ b,N⟩ and formulas (4.5):

γij =
⟨a, xi′⟩

⟨a, xi′ − xi⟩
⟨b, yj′ − xi⟩
⟨b, yj′ − yj⟩

=
⟨a⊗ b,−xi′ ⊗ xi⟩ + ⟨a, xi′⟩⟨b, yj′⟩

⟨a, xi′ − xi⟩⟨b, yj′ − yj⟩

=

〈
a⊗ b,−yj ⊗ yj′ ,

〉
+ ⟨a, xi′⟩⟨b, yj′⟩

⟨a, xi′ − xi⟩⟨b, yj′ − yj⟩
=

⟨b, yj′⟩
⟨b, yj′ − yj⟩

⟨a, xi′ − yj⟩
⟨a, xi′ − xi⟩

= νj
⟨a, xi′ − yj⟩
⟨a, xi′ − xi⟩

.

Readily, arguments put forward above for the marginals π1, π1,3 can be now
reproduced for π2, π2,3. Admissibility π ∈ Σ(µ, ν) is thus established and,
hence, also the optimality of the pair (u, π).

It remains to give the solutions of V(µ, ν) and of the second-order Beck-
mann problem (1.8):

ρ = π3 =
2∑

i,j=1

γij δzij , σ =

˚
σx,y,z π(dxdydz) =

2∑
i,j=1

γij σ
xi,yj ,zij .

Case (B):
It would be impractical to give a unified solution for all possible positions

of the points that fall within the scope of the case (B). Instead, we shall
assume that ⟨x1, y1⟩ ≥ 0 and |x1||y2| ≤ |x2||y1|. It is not restrictive as one
can always relabel the points to guarantee it. Under those assumptions,
one can easily observe that the inequality (4.4b) is automatically satisfied.
Accordingly, the case (B) is characterized by the strict inequality

⟨x2 − y2, y1 − x1⟩ < 0. (4.8)

We start by defining the point z0 ∈ R2 as the intersection of the
two straight lines that extend the segments [x1, y1] and [x2, y2], see Figs
3(e,f). Let us endow the plane R2 with a polar coordinate system x 7→(
ϱ(x), ϑ(x)

)
∈ [0,∞) × [0, 2π) where the pole and the orientation of the

system are fixed by

ϱ(z0) = 0, ϑ(x1) = 0, ϑ(x2) ∈ (0, π).
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Next, we define two coefficients:

α =
π

2∠(x2 − y2, y1 − x1)
, β =

α

4α− 1
,

where ∠ is the angle between two vectors that a priori ranges in [0, π]. Under
the assumption (4.8) we have α ∈ (12 , 1) and β ∈ (13 ,

1
2). In particular, α ̸= β.

In polar coordinates the maximizer of I(ν − µ) is

υ(r, θ) =
1

2
h(θ) r2,

where

h(θ) =

{
h1(θ) = cos(2αθ) if θ ∈

[
2kπ, 2kπ + π/(2α)

)
,

h2(θ) = cos
(
2β(2π − θ)

)
if θ ∈

[
2kπ + π/(2α), 2(k + 1)π

)
,

where k is any integer. Finally, the following pair solves the problems
I(ν − µ) and J (µ, ν):

u(x) := υ
(
ϱ(x), ϑ(x)

)
, (4.9a)

π := ν1 δ(x1,y1,y1) + µ2 δ(x2,y2,x2) + (µ1 − ν1) δ(x1,y2,z0). (4.9b)

This time, the main difficulty is to prove the admissibility of u. With the
following lemma we see that it holds exactly in the case (B). The proof can
be found in the Appendix C.

Lemma 4.5. Assume that ∠(x2 − y2, y1 − x1) ̸= 0. Then, the func-

tion u in (4.9) is an element of W 2,∞
loc (R2), whilst u /∈ C2(R2) unless

⟨x2 − y2, y1 − x1⟩ = 0. Moreover, the condition

−Id ≤ ∇2u(x) ≤ Id for a.e. x ∈ R2

holds true if and only if ⟨x2 − y2, y1 − x1⟩ ≤ 0.

We move on to check the admissibility π ∈ Σ(µ, ν). First, observe that
µ1 − ν1 = ν2 − µ2 is non-negative thanks to the assumption |x1||y2| ≤
|x2||y1|. Then, checking that the first and second marginals of π are equal
to, respectively, µ and ν is straightforward. Prior to showing that π1,3, π2,3
are martingales we make an observation. By equality of the barycentres
there holds

´
(x − z0)µ(dx) =

´
(y − z0) ν(dy). In this particular case it

leads to µ1 (x1 − z0)− ν1 (y1 − z0) = ν2 (y2 − z0)−µ2 (x2 − z0). Both triples
(z0, x1, y1) and (z0, y2, x2) are collinear, and the respective lines are never
parallel (cf. Fig. 3(f)), so the vectors on each side of the equality must be
zero. In turn, it generates the two equalities:

x1 =
ν1
µ1

y1 +
µ1 − ν1
µ1

z0, y2 =
µ2
ν2
x2 +

ν2 − µ2
ν2

z0.

By exploiting the first one, we check that π1,3 is indeed a martingale:

π1,3 = ν1δ(x1,y1) + µ2δ(x2,x2) + (µ1 − ν1)δ(x1,z0)

= µ1δx1 ⊗
(
ν1
µ1
δy1 + µ1−ν1

µ1
δz0

)
+ µ2 δx2 ⊗ δx2 .
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Handling π2,3 is similar. Ultimately, π ∈ Σ(µ, ν) is established.
It remains to check the three-point equality (1.13), and, in view of the

form of π, it must be tested for the three triples (x, y, z). The construction
of u ensures that:

u(ξ) =
1

2
|ξ − z0|2 ∀ ξ ∈ L1, u(ξ) = −1

2
|ξ − z0|2 ∀ ξ ∈ L2, (4.10)

where L1 and L2 are the lines on which the triples (z0, x1, y1) and (z0, y2, x2)
lie, respectively. As a result, one arrives at the following identities:

u(ξ) −
[
u(x) + ⟨∇u(x), ξ − x⟩

]
= 1

2 |ξ − x|2 ∀ ξ, x ∈ L1, (4.11)[
u(y) + ⟨∇u(y), ξ − y⟩

]
− u(ξ) = 1

2 |ξ − y|2 ∀ ξ, y ∈ L2. (4.12)

We are ready to verify the condition (1.13). For the triple (x1, y1, y1) it
reduces to (4.11) with x = x1, ξ = y1, while for (x2, y2, x2) to (4.12) with
y = y2, ξ = x2. Finally, condition (1.13) for the triple (x1, y2, z0) can be
validated by adding equalities (4.11) and (4.12), written for x = x1, ξ = z0
and, respectively, y = y2, ξ = z0.

Optimality of the pair (u, π) is now established. Solutions to V(µ, ν) and
to the second-order Beckmann problem (1.8) read:

ρ = π3 = ν1 δy1 + µ2 δx2 + (µ1 − ν1) δz0 ,

σ = ν1 σ
x1,y1,y1 + µ2 σ

x2,y2,x2 + (µ1 − ν1)σ
x1,y2,z0 .

For both cases (A) and (B), the solutions ρ and σ are displayed in Fig. 3.
The blue colour matches the segments where σ is a positive semi-definite
rank-one matrix, whilst the red colour matches the negative part. Figs
3(b,c,d) correspond to the case (A) where the two lines form an acute angle.
Fig. 3(f) demonstrates case (B) when this angle is obtuse. Finally, Fig. 3(e)
shows the limit case for the right angle. In this case, the mass at the point
z21 vanishes, and the solution adheres to the formulas given either for the
case (A) or the case (B).

4.4. The basic first-order distribution data. Unlike in the previous
examples, here we shall consider a source which is not a measure but the
first-order distribution fx,y,z defined in the introduction. It is supported on
the two points x, y ∈ R2 and parametrized by the third point z:

fx,y,z = δy − δx − div
(
(z − y) δy − (z − x) δx

)
.

To focus attention we shall assume that the vectors x− z and y− z form an
angle ranging in (0, π]. That is to say that x ̸= y, while z cannot lie on the
line crossing x, y except on the open segment ]x, y[.

As announced in the introduction, fx,y,z = div2σx,y,z. Namely, it is the
source term induced by the measure σx,y,z that serves as an elementary
block for building solutions σ of the second-order Beckmann problem (1.8)
for sources that are measures. Since σx,y,z is a competitor in the problem
(1.8) for the source f = fx,y,z, it is natural to ask if it is optimal for such
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(a) (b) (c)

(d) (e) (f)

Figure 3. Data µ (gray) and ν (black), optimal ρ (ma-
genta), and optimal σ (blue and red for the positive and
negative part). (a) generic data in the case (A); (b,c,d) so-
lutions for various data in the case (A); (e) solution for the
limit case; (f) solution for data in the case (B).

a basic first-order distribution data. This short subsection is to settle this
issue.

To that aim we exploit the construction of u put forth in Example 4.3,
case (B). With the polar coordinate system satisfying ϱ(z) = 0, ϑ(x) = 0,
ϑ(y) ∈ (0, π], we repeat the construction of u with the parameter α =
π/

(
2∠(x − z, y − z)

)
. By the property that is analogous to (4.10), one

obtains

⟨u, fx,y,z⟩ =
[
u(y) + ⟨∇u(y), z − y⟩

]
−
[
u(x) + ⟨∇u(x), z − x⟩

]
= 1

2 |x− z|2 + 1
2 |y − z|2 = c(x, y, z).

On the other hand, from the proof of Corollary 1.2 we also know that´
ϱ0(σx,y,z) = c(x, y, z). Owing to the duality result in Proposition 2.1,

optimality of the pair (u, σx,y,z) will follow provided that u is admissible. In
view of Lemma 4.5, it is the case only if x − z and y − z form an obtuse
angle, which is to say that z lies in the disk of the diameter [x, y]. We have
arrived at the following result:

Proposition 4.6. Assume that z ∈ B
(x+y

2 , |x−y|2

)
, then σ = σx,y,z solves

the second-order Beckmann problem (1.8) for the first-order distribution data
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f = fx,y,z. Accordingly, we have the equality

I(fx,y,z) = c(x, y, z).

Remark 4.7. The result above is valid for z = x (or for z = y). In this case,
σx,y,z is negative (or positive) semi-definite, while the optimal potential is

given by u = −1
2 | · |

2 (or u = 1
2 | · |

2).
On the other hand, we stress the fact that σx,y,z is no longer optimal if z

is outside of the disc B
(x+y

2 , |x−y|2

)
. Indeed, in this case we can show that

I(fx,y,z) = |z − x+y
2 ||x− y| which is strictly less than c(x, y, z) for such z.

An exception occurs when z lies on the extension of the segment [x, y]. This
is due to the cancelling effect between the positive and negative parts of
σx,y,z.

5. The optimal grillage

We conclude with a section devoted to an application of the results devel-
oped in this paper to optimal design in mechanics. Classically, by a grillage
one understands a planar multi-junction structure whose components are
1D straight bars. Although geometrically identical to trusses [10], a grillage
– typically constituting a bearing structure of a ceiling – lies in a horizon-
tally oriented plane and it is loaded vertically at its junctions. The load
causes the bars to bend rather than stretch, ultimately resulting in different
equilibrium configurations for the two types of structures.

The optimal design of trusses is famously known to be ill-posed, calling for
relaxation in the form of the Michell problem [10, 22]. We will utilize Corol-
lary 1.2 to prove that, in contrast, optimal grillages do exist provided that
the load is a measure. Despite the vast literature on grillage optimization
initiated in [28], it seems to be the first result of its kind. Before stating the
theorem, we will briefly recall the topic of truss optimization. We will finish
with two open problems, including the extension of the existence result to
data that are first-order distributions.

5.1. Review on truss optimization and Michell problem. A truss
is a particular case of a 2D or 3D elastic solid that decomposes to one-
dimensional straight bars. In general, the stress tensor in a solid can be
described as a matrix valued measure σ ∈ M(Rd;Sd×d). It must satisfy
the equilibrium equation −div σ = F in (D′(Rd))d for a system of forces
F ∈ M(Rd;Rd). For σ to exist, the load F has to be balanced in the
following sense:

´
⟨v0, F ⟩ = 0 whenever v0(x) = Ax + b for b ∈ Rd and a

skew-symmetric d × d matrix A. By a truss we can understand the stress
tensors that are of the form:

σλ =

¨
σx,y λ(dxdy), λ ∈ M

(
(Rd)2;R

)
, (5.1)
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where σx,y = y−x
|y−x| ⊗

y−x
|y−x| H

1 [x, y] for x ̸= y, and σx,x = 0. The positive

and negative part λ+(dxdy), λ−(dxdy) represent, respectively, the tensile
and compressive forces in the bars [x, y].

Optimizing trusses amounts to looking for a measure λ that, under the
condition of equilibrating F , minimizes the total energy, cf. [10]. Energy of
a single bar [x, y] that is subject to a unit tensile/compressive force is the
total variation

´
|σx,y| = |y − x|. Accordingly, the optimal truss problem

reads:

inf

{¨
|y − x| |λ|(dxdy) : λ ∈ M

(
(Rd)2;R

)
, −div σλ = F

}
. (5.2)

Note that the support of λ can exceed the set (spF )2, which is to say that
we can add junctions that are not loaded.

In (5.2) the total mass of λ is not controlled, raising the issue of existence.
Moreover, in practice engineers expect that for a finitely supported load F
there is a solution λ that is finitely supported. This means that the structure
can be manufactured as a junction of a finite number of bars. Meanwhile,
already at the dawn of the 20th century, A.G.M. Michell observed that an
optimal truss does not exist even for the simplest loads. In his celebrated
paper [23] he considered the bridge problem where the data is the system of
three vertical forces in the plane R2:

F =
e2
2
δe1 +

e2
2
δ−e1 − e2δ0, (5.3)

where e1 = (1, 0), e2 = (0, 1). Then, looking for finitely supported solutions
of (5.2) leads to construction of minimizing sequences λh with the number
of points in spλh going to infinity. When taking the weak-* limit σ of the
sequence σλh one discovers that it is not representable through (5.1), see Fig.
4(a). The measure σ is a solution of what today is known as the Michell
problem:

min

{ˆ
ϱ0(σ) : σ ∈ M(Rd;Sd×d), −div σ = F

}
. (5.4)

Recall that ϱ0 is the Schatten norm: ϱ0(S) =
∑d

i=1 |λi(S)|. In the mod-
ern measure-theoretic setting the Michell problem was first formulated in
[10]. Therein, it was proved that inf (5.2) = min (5.4). Once a compactly
supported F satisfies the balance condition, the minimum in the Michell
problem is attained. From Fig. 4(a) one can discern that solutions may
charge curved curves (the thick lines in the figure). It rules out representing
solutions through (5.1). To address this, the work [10] put forward another
formulation where one seeks a signed measure on the space of regular curves,
thus allowing for curved bars. To date, the existence issue remains open.

5.2. Optimal grillage via the three-marginal optimal transport.
The other example of a structure that is built from 1D bars is a grillage, and
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(a) (b)

Figure 4. (a) Michell structure for a finitely supported sys-
tem of forces F ; (b) optimal grillage for a finitely supported
torque f = −divF .

it is a special case of a plate. By definition, plates are two-dimensional bod-
ies occupying a horizontal plane Rd = R2. In the case of plates, the measure
σ ∈ M(Rd;Sd×d) represents the bending moment tensor. The out-of-plane
equilibrium of the plates is governed by the equation div2σ = f in D′(Rd),
where f = f0 − divF is a first-order distribution. The measure f0 models
out-of-plane forces. One can think of the positive part f0,+ as of the gravity
pull, whilst f0,− plays the role of the upward reaction forces. The term F
represents torques that act about in-plane axes. The balance condition for
the load f reads as in (2.2).

With the second-order equilibrium equation, the decomposition of the
measure σ to segments allows for adding affinely varying density. One of
the ways of achieving this is through using σx,y,z as the basic measure. It
concentrates on the union of segments [x, z] ∪ [z, y], see Fig. 1. Thus, by a
grillage we will understand the bending moment tensor of the form

σπ =

˚
σx,y,z π(dxdydz), π ∈ M+

(
(Rd)3

)
. (5.5)

In the case of grillages, π(dxdydz) enjoys the interpretation of the transverse
shear force in the two-bar structure. Assuming that the segments [x, z] and

[z, y] do not overlap, the energy of this structure is
´
|σx,y,z| = 1

2

(
|z − x|2 +

|z − y|2
)

= c(x, y, z). Accordingly, the optimal grillage problem can be
formulated as follows:

IOG(f) := inf

{˚
c(x, y, z)π(dxdydz) : π ∈ M+

(
(Rd)3

)
, div2σπ = f

}
.

Note that π is a positive Borel measure that is not necessarily finite. In fact,
the condition

˝
c dπ < ∞ is sufficient for σπ to be a well defined element

of the space M(Rd;Sd×d).
A priori, the optimal grillage problem shares the issues of non-compactness

that are known for truss optimization. A natural candidate for relaxation is
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the second-order Beckmann problem (1.8):

I(f) = min

{ˆ
ϱ0(σ) : σ ∈ M(Rd;Sd×d), div2σ = f

}
.

The solution is guaranteed to exist provided that f0 ∈ M2(Rd), and F ∈
M1(Rd;Rd) satisfy the balance condition (2.2), see Section 2.1. Utilizing the
subadditivity of the functional σ 7→

´
ϱ0(σ) we can show that

´
ϱ0(σπ) ≤˝

c dπ, which furnishes the inequality

IOG(f) ≥ I(f). (5.6)

Historically, the systematic study of optimal grillages was initiated in
the engineering paper [28]. Inspired by the theory of Michell structures, the
author has tackled the Beckmann problem I(f) from the outset. However, in
the numerous analytical examples worked out in [28] and subsequent works,
e.g. [27], one can discern the grillage-like structure (5.5) of the optimal
solutions σ. Unlike in the Michell problem, the curved bars are not exhibited
at optimality.

The next result lays out a foundation for the foregoing observations. Ex-
ploiting the novel three-marginal optimal transport formulation developed
in this paper, we show that the optimal grillage problem IOG(f) admits a
solution when f is a measure, i.e. when the first-order term −divF is ab-
sent. On top of that, we prove that the optimal grillage consists of a finite
number of bars once the load f is discrete.

Theorem 5.1. If the load distribution f is a measure in M2(Rd), then the
equality IOG(f) = I(f) holds true together with the following statements.

(i) There exists a solution π of the optimal grillage problem IOG(f),
and, for any such solution, σπ solves the Beckmann problem I(f).
Moreover, π can be chosen such that π

(
(Rd)3

)
<∞, and

spσπ ⊂ B(sp f+, sp f−), (5.7)

where f = f+ − f− is the Jordan decomposition to the positive and
negative part.

(ii) If, in addition, the measure f is finitely supported, then one can
choose a finitely supported solution π. In particular,

σπ ≪ H1 G

where G ⊂ Rd is a graph consisting of at most 2mn segments where
m,n is the cardinality of sp f+, sp f−, respectively.

Proof. It is not restrictive to assume that f = ν − µ for the probability dis-
tributions µ, ν ∈ P2(Rd) that are centred, [µ] = [ν] = 0. Let π ∈ P

(
(Rd)3

)
be a solution of the problem J (µ, ν), see (1.10). By the virtue of Corollary
1.2, σπ solves the second-order Beckmann problem I(f). In particular, it
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satisfies the equation div2σπ = f , so π is a competitor in IOG(f). Thanks
to assertion (i) of Theorem 1.3 and to the inequality (5.6), we obtain˚

c dπ = J (µ, ν) = I(f) ≤ IOG(f) ≤
˚

c dπ,

which proves optimality of π together with the equality I(f) = IOG(f). The
finiteness of π is trivial as it is a probability, while the inclusion (5.7) is the
final assertion of Corollary 1.2. This concludes the proof of the part (i).

To prove the statement (ii), we assume that µ =
∑m

i=1 µiδxi and ν =∑n
j=1 νjδyj . Let u be any solution of the problem (1.7). Then, by assertion

(ii) in Corollary 1.2, the 3-plan π must be of the form

π =

m∑
i=1

n∑
j=1

γijδ(xi,yj ,zij), where zij =
xi + yj

2
+

∇u(yj) −∇u(xi)

2
,

and thus σπ =
∑m

i=1

∑n
j=1 γij σ

xi,yj ,zij . The proof is complete since

spσxi,yj ,zij ⊂ [xi, zij ] ∪ [yj , zij ]. □

Optimal grillages have been already presented in Example 4.3, where µ,
ν were two-point measures. The grillages σπ were showed in Fig. 3, and
they consisted of eight or four bars with affinely varying bending moments.
Handling more complex data µ, ν calls for numerical treatment of the three-
marginal optimal transport problem (1.10). For a discrete load µ, ν, it can
be rewritten as a finite dimensional second-order conic program. Then, it
can be tackled using off-the-shelf convex optimization software.

Example 5.2 (discrete load). Here we present an optimal grillage found
numerically for the discrete load f = ν−µ as in Fig. 5(a). The measure µ is
uniformly distributed on a grid of 29×29 points, simulating the gravity pull
coming from a square concrete slab. The five equal reaction forces in the
columns are encoded by ν. The numerical simulation of an optimal grillage
σπ is showed in Fig. 5(c). Meanwhile, Fig. 5(b) presents the probability ρ
solving the problem V(µ, ν).

Example 5.3 (continuous load). In engineering practice, it is typical to as-
sume that the weight of a slab is transferred to the grillage through a finite
system of point loads, as demonstrated in the previous example. Nonethe-
less, it is natural to explore the optimal grillage problem also when the load
is continuous: µ = L2 Q, where Q is the unit square, see Fig. 6(a). Nu-
merically, it comes down to a fine discretization of µ, here by a 113 × 113
mesh. Fig. 6(c) shows the approximation σπh of an optimal grillage σπ. It
is clear that the support of σπ exceeds the square Q, but is contained within
the set B(spµ, sp ν). A prediction of the exact solution ρ for the optimal
dominance problem V(µ, ν) is presented in Fig. 6(b). Based on the numer-
ical simulation the authors expect that in the five quadrilateral regions ρ
is equal to µ, i.e. to the Lebesgue measure. Partially on their boundaries,
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(a) (b) (c)

Figure 5. Numerical solution of the optimal grillage prob-
lem: (a) finitely supported data µ, ν; (b) optimal grillage σπ
where blue and red indicate, respectively, the positive and
the negative part; (c) solution ρ of the optimal dominance
problem V(µ, ν).

there is a part of ρ that is absolutely continuous with respect to H1. Finally,
at the vertices, there are concentrations in the form of Dirac delta masses.

5.3. Open problems.

5.3.1. Loads that are general first-order distributions. Generalization of
Theorem 5.1 towards general first-order distributions f = f0 − divF is not
straightforward. Unlike f0 = ν − µ, the vector measure F does not admit
a natural decomposition to a pair of measures. It makes it difficult to pro-
pose a generalization of the set Σ(µ, ν), and thus to find the right optimal
transport formulation like (1.10) whose solution is guaranteed to exist.

The situation improves when the supports of the measures f0, F are finite.
It is then possible to prove that there exists a finitely supported solution
of the optimal grillage problem IOG(f). The main argument is using the
minimal extensions of jets put forth in [21]. We skip the details here, and,
instead, in Fig. 4(b) we show the optimal grillage for f0 = 0 and F as in
the bridge problem, see (5.3). Note that the mechanical nature of F differs
for trusses (F are forces) and grillages (F are torques).

If the measure F is not finitely supported, the issue of existence is more
subtle. The authors found examples of F that charge a curved curve for
which existence of solutions π to the optimal grillage problem IOG(−divF )
must imply that π

(
(R2)3

)
= ∞. The infinite mass of π makes it possible to

construct infinite chains of straight bars whose lengths tend to zero, while
their thickness is bounded from below by a positive constant. Such chains
seem to open the door to forming solutions π for such data F . Ultimately, the
optimal grillage problem for data that are general first-order distributions is
not well understood at the moment, and it remains to leave the reader with
the following question:
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(a)

(b) (c)

Figure 6. (a) Absolutely continuous loading µ versus dis-
crete reactions ν; (b) prediction of solution ρ of the problem
V(µ, ν) consisting of 2D, 1D, and atomic part; (c) numerical
approximation of an optimal grillage σπ via a fine discretiza-
tion of µ.

Problem 5.4. Assume that f = f0 − divF where (f0, F ) ∈ M2(Rd) ×
M1(Rd;Rd), and that the support of F is infinite. Does the optimal grillage
problem IOG(f) admit a solution?

5.3.2. Domain confinement. In practical applications, engineers often work
within a prescribed design domain Ω, a bounded open and connected subset
of Rd. For instance, a natural choice for Ω in Example (5.3) is the square
Q = spµ being the outline of a ceiling. The domain confinement can be
easily accounted for in the optimal grillage problem IOG(f) by adding the
constraint spσπ ⊂ Ω. Assuming that the load f is a measure, from assertion
(i) of Corollary 5.1 we can see that the whole result holds true provided that

B(sp f+, sp f−) ⊂ Ω. (5.8)

In this case, the constraint spσπ ⊂ Ω is not binding. If the inclusion (5.8) is
not satisfied, then one should work within the framework of the second-order
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Beckmann problem, whose modification now reads

I(f,Ω) := min

{ˆ
ϱ0(σ) : σ ∈ M(Rd;Sd×d), spσ ⊂ Ω, div2σ = f

}
.

Numerical experiments in 2D indicate that, with the condition (5.8) violated,
there might not be solutions of I(f,Ω) which take the form σπ. It appears
that optimal σ may charge subsets of the boundary ∂Ω with the density
being a full-rank matrix. In terms of mechanics, it corresponds to 1D bars
(possibly curved) subject not only to bending moments but also to torsion.
In the interior Ω, however, the solution seems to decompose to straight bars
σx,y,z. These observations lead to the following open problem:

Problem 5.5. Assume a bounded domain Ω ⊂ Rd with Lipschitz regular
boundary and a load f ∈ M(Ω). Do there exist σ∂Ω ∈ M(Rd;Sd×d) concen-

trated on ∂Ω and π ∈ M+(Ω
3
) such that

σ =

˚
σx,y,z π(dxdydz) + σ∂Ω

solves the confined second-order Beckmann problem I(f,Ω)?

Appendix A. Convex analysis

Let X be a normed space and let h : X → R ∪ {+∞} be a convex
function. Recall that the Moreau-Fenchel conjugate of h is defined on the
dual space X∗ by:

h∗(x∗) := sup
x∈X

{
⟨x, x∗⟩ − h(x)

}
∀x∗ ∈ X∗.

Clearly, h∗ is convex and lower semi-continuous with respect to the weak-*
topology on X∗. Next, we define the biconjugate of h on X by:

h∗∗(x) := sup
x∗∈X∗

{
⟨x, x∗⟩ − h∗(x∗)

}
∀x ∈ X.

The following classical result (due to J.J. Moreau [24] in the infinite dimen-
sional case) is used several times in this paper.

Proposition A.1. Assume that there exists r > 0 such that sup{h(x) :
∥x∥ ≤ r} < +∞. Then:

(i) h is continuous at 0, while h∗ is coercive and attains its minimum
on X∗;

(ii) we have the equalities: h(0) = h∗∗(0) = −minh∗.

Appendix B. Integration by parts

We give here the justification of the integration by parts formula on the
whole Rd that was required in Section 2 (see (2.7)) and in the proof of
Proposition 4.1.
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Lemma B.1. Let f = f0 − divF , where (f0, F ) is any pair in M2(Rd) ×
M1(Rd;Rd) satisfying (2.2). Let σ ∈ M(Rd;Sd×d) satisfy div2σ = f in
D′(Rd). Then, for every u ∈ C2(Rd) with lip(∇u) < +∞, we have:ˆ 〈

∇2u, σ
〉

= ⟨u, f⟩ = ⟨u, f0⟩ + ⟨∇u, F ⟩. (B.1)

Proof. By the orthogonality conditions (2.2), (B.1) is valid for affine func-
tions. Therefore, it is not restrictive to assume that u and ∇u vanish
at 0; we may also assume that lip(∇u) ≤ 1. On the other hand, the
equality div2σ = f in the sense of distributions implies that (B.1) holds
true if u ∈ D(Rd). By using smooth convolution kernels, this can be ex-
tended to u ∈ C2(Rd) that are compactly supported in Rd. In order to
remove the latter condition, we consider a sequence of radial cut-off func-

tions ηk(x) := η( |x|k ) where

η ∈ D(R; [0, 1]), η(t) = 1 if |t| ≤ k, η(t) = 0 if t ≥ 2k.

Then, we set uk := u ηk. Since uk satisfies (B.1), we have only to check that
the sequence (vk), given by vk := u− uk = (1 − ηk)u, satisfies:

⟨vk, f0⟩ → 0, ⟨∇vk, F ⟩ → 0,
〈
∇2vk, σ

〉
→ 0. (B.2)

Since vk(x) vanishes for |x| ≤ k, while |vk(x)| ≤ |(u(x)| ≤ 1
2 |x|

2 elsewhere,

we infer that (vk) is bounded in X2(Rd). Hence, ⟨vk, f0⟩ → 0 by applying
(2.1) with µ = f0 ∈ M2(Rd). In the same way, ∇vk is supported on the
subset {k ≤ |x| ≤ 2k}, where it satisfies the upper bound

|∇vk(x)| =

∣∣∣∣(1 − ηk(x)
)
∇u(x) − 1

k
u(x) η′

( |x|
k

) x

|x|

∣∣∣∣
≤ |∇u(x)| +

lip(η)

k
|u(x)| ≤

(
1 + lip(η)

)
|x|.

In the last inequality we used the fact that |∇u(x)| ≤ |x|, and |u(x)| ≤
1
2 |x|

2 ≤ k|x| on sp(∇vk). It follows that (∇vk) is bounded in X1(Rd;Rd) and,

recalling that F ∈ M1(Rd;Rd), we may apply (2.1) to infer that ⟨∇vk, F ⟩ →
0. Next, we see that ∇2vk = (1−ηk)∇2u− (∇ηk⊗∇u+∇u⊗∇ηk+u∇2ηk)
where

∇ηk(x) =
1

k
η′
( |x|
k

) x

|x|
,

∇2ηk(x) =
1

k2
η′′
( |x|
k

)x⊗ x

|x|2
+

1

k|x|
η′
( |x|
k

)(
Id − x⊗ x

|x|2

)
.

We notice that:

- for any x ̸= 0 there hold the bounds ϱ(∇ηk ⊗∇u+∇u⊗∇ηk)(x) ≤
2|∇u(x)| lip(η)k and ϱ

(
∇2ηk(x)

)
≤ lip(η′)

k2
+ lip(η)

k|x| ;

- ∇ηk and ∇2ηk are supported on {k ≤ |x| ≤ 2k}, where it holds that
|u(x)| ≤ 1

2 |x|
2 ≤ 2k2 and |∇u(x)| ≤ |x| ≤ 2k.
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All in all, we obtain a uniform upper bound for ϱ(∇2vk) whose support is
contained in {k ≤ |x| ≤ 2k}

ϱ
(
∇2vk(x)

)
≤ ϱ

(
∇2u(x)

)
+ ϱ

(
∇ηk ⊗∇u+ ∇u⊗∇ηk

)
(x) + |u(x)| ϱ

(
∇2ηk(x)

)
≤ 1 + 2 |∇u(x)| lip(η)

k
+ |u(x)|

( lip(η′)

k2
+

lip(η)

k|x|

)
≤ 1 + 2 lip(η)

|x|
k

+
1

2
lip(η′)

|x|2

k2
+

1

2
lip(η)

|x|
k

≤ C := 1 + 5 lip(η) + 2 lip(η′).

By virtue of the inequality |
〈
∇2vk, σ

〉
| ≤ ϱ(∇2vk) ϱ

0(σ) ≤ Cϱ0(σ) holding
in the sense of measures, it follows that:

|
〈
∇2vk, σ

〉
| ≤ C

ˆ
{k≤|x|≤2k}

ϱ0(σ).

Since
´
Rd ϱ

0(σ) < +∞, we conclude that
〈
∇2vk, σ

〉
→ 0 for k → ∞ as

required in (B.2). This ends the proof. □

Appendix C. two-point measures – Additional proofs

Proof of Lemma 4.4. It is not restrictive to assume that ⟨x1, y1⟩ ≥ 0. It is
then easy to check that inequality (4.4b) is met automatically, thus we can
focus on (4.4a) only. Next, we can enforce the orientation of the eigenvector
b so that:

⟨b, y1⟩ > 0, ⟨b, y2⟩ < 0, ⟨b, x1⟩ ≥ 0, ⟨b, x2⟩ ≤ 0. (C.1)

Accordingly, one can easily check that γij > 0 when i = j, no matter if
inequality (4.4a) holds or not. Therefore, we have to show that (4.4a) is
equivalent to the system of two inequalities γ12 ≥ 0, γ21 ≥ 0. What is more,
this equivalence is trivial to show when ⟨x1, y1⟩ = 0. In the sequel we thus
assume that ⟨x1, y1⟩ > 0.

For t > 0 we define:

x̃1(t) = t x1, x̃2(t) =
1

t
x2, g(t) = t ⟨x̃2(t) − y2, y1 − x̃1(t)⟩.

The function g is quadratic on R. Thanks to ⟨x1, y1⟩ > 0, one can show
that g is concave, and it admits two positive roots: 0 < t1 < t2. For each
k ∈ {1, 2} we define two vectors:

vk = x̃2(tk) − y2, wk = y1 − x̃1(tk). (C.2)

We shall show that, for both k, (vk, wk) are mutually orthogonal eigenvectors
of N −M (not necessarily normalized). Orthogonality follows from the fact
that tk are the roots for g. The next observation is key:

−y2 ⊗ y1 + x̃2(t) ⊗ x̃1(t) = −y2 ⊗ y1 + x2 ⊗ x1 = N −M
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for any t > 0. We exploit it to obtain:

(N −M) vk = −⟨y1, vk⟩ y2 + ⟨x̃1(tk), vk⟩ x̃2(tk)
= −⟨y1 − wk, vk⟩ y2 + ⟨x̃1(tk), vk⟩ x̃2(tk)
= −⟨x̃1(tk), vk⟩ y2 + ⟨x̃1(tk), vk⟩ x̃2(tk)
= ⟨x̃1(tk), vk⟩ (x̃2(tk) − y2) = ⟨x̃1(tk), vk⟩ vk.

Similarly, one shows that (N −M)wk = ⟨−y2, wk⟩wk. The corresponding
eigenvalues are λvk = ⟨x̃1(tk), vk⟩ and λwk

= ⟨−y2, wk⟩. Next, we assess
which of the four vectors (C.2) are parallel to b. To that aim we compare
the signs; recall that λa < 0, λb > 0. We compute the derivative of g at its
roots:

g′(tk) = ⟨−y2, y1 − tkx1⟩ + ⟨x2 − tky2,−x1⟩
= ⟨−y2, wk⟩ − ⟨vk, x̃1(tk)⟩ = λwk

− λvk .

Due to the concavity of the quadratic function g, it must satisfy g′(t1) > 0
and g′(t2) < 0. We conclude that λv1 < λw1 and λv2 > λw2 . As a result,
v2, w1 must be the eigenvectors that are parallel to b. One can easily check
that the three vectors also have the same orientations. To sum up, we have:

b =
v2
|v2|

=
w1

|w1|
=

1

|v2|
(
x̃2(t2) − y2

)
=

1

|w1|
(
y1 − x̃1(t1)

)
. (C.3)

We are ready to prove our assertion. Since ⟨b, y1 − y2⟩ > 0 due to (C.1),
we deduce that sgn(γ12) = sgn(⟨b, y1 − x1⟩) and sgn(γ21) = sgn(⟨b, x2 − y2⟩).
Defining the two functions:

f1(t) := |v2|⟨b, y1 − t x1⟩ = ⟨x̃2(t2) − y2, y1 − x̃1(t)⟩, (C.4)

f2(t) := |w1|
〈
1
t x2 − y2, b

〉
= ⟨x̃2(t) − y2, y1 − x̃1(t1)⟩ (C.5)

we see that sgn(γ12) = sgn(f1(1)), and sgn(γ21) = sgn(f2(1)). Due to (C.1),
the function f1 is strictly decreasing, and f2 is strictly increasing on (0,∞).
The alternative formulas for f1, f2 given above follow by (C.3). They provide
the equalities f1(t2) = f2(t1) = 0 since g(t1) = g(t2) = 0.

Let us now assume that the inequality (4.4a) is satisfied or, equivalently,
g(1) ≥ 0. By the properties of g, there holds t1 ≤ 1 ≤ t2. Since f1 is
decreasing, we have f1(1) ≥ f1(t2) = 0. Similarly, because f2 is increasing,
f2(1) ≥ f2(t1) = 0. This gives γ12 ≥ 0 and γ21 ≥ 0.

Contrarily, assume that (4.4a) does not hold, which gives g(1) < 0. Then,
either 1 < t1 < t2 or t1 < t2 < 1. In the first case, we have f2(1) < f2(t1) =
0, which yields γ21 < 0. In the second case f1(1) < f1(t2) = 0, and thus
γ12 < 0 by the same token. The proof is complete. □

Proof of Lemma 4.5. Let us observe that h : R → R is C1 and 2π-periodic
on R. We thus immediately infer that u is C1 on R2\{z0}. However, thanks
to the factor r2 in the definition of υ, it can be showed that ∇u is also
continuous at z0 with ∇u(z0) = 0, that is u ∈ C1(R2). The function h
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is also piecewise C2. More precisely, h′′ has discontinuity points 2kπ and
2kπ + π/(2α) for integer k if and only if α ̸= β. As a result, u is not of
class C2 except for the case ⟨x2 − y2, y1 − x1⟩ = 0, which corresponds to
the condition α = β exactly. Nonetheless, the piecewise continuity of h′′ is
enough to deduce that

u ∈ C2(V1 ∪ V2), Vi =
{

(ϱ, ϑ)−1(r, θ) : r > 0, θ ∈ Ai
}
,

A1 =]0, π/(2α)[, A2 =]π/(2α), 2π[.

Moreover, on each open set Vi there holds ∇2u(x) = (Q(x))⊤Hi

(
ϱ(x), ϑ(x)

)
Q(x),

where Q(x) is a rotation matrix, and

Hi(r, θ) =

[
∂2υ
∂r2

− 1
r2
∂υ
∂θ + 1

r
∂2υ
∂r∂θ

− 1
r2
∂υ
∂θ + 1

r
∂2υ
∂r∂θ

1
r2
∂2υ
∂2θ

+ 1
r
∂υ
∂r

]
=

[
hi(θ)

1
2h

′
i(θ)

1
2h

′
i(θ)

1
2h

′′
i (θ) + hi(θ)

]
.

Since R2\(V1 ∪ V2) is Lebesgue negligible and hi are cosine functions, we

infer that u ∈W 2,∞
loc (R2), which establishes the first part of the assertion.

To prove the second part, it is enough that we check that for i = 1, 2 the
eigenvalues of Hi(r, θ) = Hi(θ) remain in the regime [−1, 1] if and only if
⟨x2 − y2, y1 − x1⟩ ≤ 0. Starting from i = 1, we obtain

H1(θ) =

[
cos(2αθ) α sin(2αθ)
α sin(2αθ) (1 − 2α2) cos

(
2αθ

) ] ,
and, after using the Pythagorean trigonometric identity, formulas for the
eigenvalues λ−, λ+ follow:

λ±(θ) = (1 − α2) cos(2αθ) ± α
√

1 − (1 − α2) cos2(2αθ).

Assume first that ⟨x2 − y2, y1 − x1⟩ > 0, which gives α > 1. Then,
clearly λ−(0) = 1 − 2α2 < −1. It remains to check the case when
⟨x2 − y2, y1 − x1⟩ ≤ 0, for which α, β ≤ 1. Thanks to elementary com-
putations we get the estimate:(

± 1−(1 − α2) cos(2αθ)
)2

= (1 − α2)
(
1 ∓ cos(2αθ)

)2
+ α2

(
1 − (1 − α2) cos2(2αθ)

)
≥
(
α
√

1 − (1 − α2) cos2(2αθ)
)2
,

where we acknowledged that α ≤ 1. Since the term (1−α2) cos(2αθ) ranges
in [−1, 1], from the estimate above we can deduce that indeed λ±(θ) ∈
[−1, 1]. Handling the matrix H2(θ) amounts to replacing α with β. However,
since β ≤ 1 as well, the same reasoning stands. □
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[6] K. Bo lbotowski, T. Lewiński: Setting the free material design problem through the

methods of optimal mass distribution. Calc. Var. Partial. Differ. Equ. 61: Article
No. 76, 2022.
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elastic membranes leads to relaxation. SIAM J. Math. Anal. 38:657–680, 2006.

[14] G. De Philippis, A. Figalli: Optimal regularity of the convex envelope. Trans. Am.
Math. Soc. 367:4407–4422, 2015.
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