Relaxed multi-marginal costs and quantization effects - Université de Toulon
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2020

Relaxed multi-marginal costs and quantization effects

Résumé

We propose a duality theory for multi-marginal repulsive cost that appear in optimal transport problems arising in Density Functional Theory. The related optimization problems involve probabilities on the entire space and, as minimizing sequences may lose mass at infinity, it is natural to expect relaxed solutions which are sub-probabilities. We first characterize the N-marginals relaxed cost in terms of a stratification formula which takes into account all k interactions with k ≤ N. We then develop a duality framework involving continuous functions vanishing at infinity and deduce primal-dual necessary and sufficient optimality conditions Next we prove the existence and the regularity of an optimal dual potential under very mild assumptions. In the last part of the paper, we apply our results to a minimization problem involving a given continuous potential and we give evidence of a mass quantization effect for optimal solutions.
Fichier principal
Vignette du fichier
S0294144920300639.pdf (633.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02953331 , version 1 (03-02-2023)

Licence

Identifiants

Citer

Guy Bouchitté, Giuseppe Buttazzo, Thierry Champion, Luigi de Pascale. Relaxed multi-marginal costs and quantization effects. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020, ⟨10.1016/j.anihpc.2020.06.004⟩. ⟨hal-02953331⟩
84 Consultations
31 Téléchargements

Altmetric

Partager

More