A new class of cost for optimal transport planning - Université de Toulon
Pré-Publication, Document De Travail Année : 2018

A new class of cost for optimal transport planning

Résumé

We study a class of optimal transport planning problems where the reference cost involves a non linear function G(x, p) representing the transport cost between the Dirac mesure x and a target probability p. This allows to consider interesting models which favour multi-valued transport maps in contrast with the classical linear case (G(x, p) = R c(x, y) dp) where finding single-valued optimal transport is a key issue. We present an existence result and a general duality principle which apply to many examples. Moreover, under a suitable subadditivity condition, we derive a Kantorovich-Rubinstein version of the dual problem allowing to show existence in some regular cases. We also consider the well studied case of Martingale transport and present some new perspectives for the existence of dual solutions in connection with-convergence theory.
Fichier principal
Vignette du fichier
ABC-Final.pdf (884.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01741688 , version 1 (23-03-2018)

Identifiants

  • HAL Id : hal-01741688 , version 1

Citer

Jean-Jacques Alibert, Guy Bouchitté, Thierry Champion. A new class of cost for optimal transport planning. 2018. ⟨hal-01741688⟩
350 Consultations
353 Téléchargements

Partager

More