Mean field theory for a general class of short-range interaction functionals - Université de Toulon
Pré-Publication, Document De Travail Année : 2023

Mean field theory for a general class of short-range interaction functionals

Résumé

In models of $N$ interacting particles in $\R^d$ as in Density Functional Theory or crowd motion, the repulsive cost is usually described by a two-point function $c_\e(x,y) =\ell\Big(\frac{|x-y|}{\e}\Big)$ where $\ell: \R_+ \to [0,\infty]$ is decreasing to zero at infinity and parameter $\e>0$ scales the interaction distance. In this paper we identify the mean-field energy of such a model in the short-range regime $\e\ll 1$ under the sole assumption that $\exists r_0>0 \ : \ \int_{r_0}^\infty \ell(r) r^{d-1}\, dr <+\infty$. This extends recent results \cite{hardin2021, HardSerfLebl, Lewin} obtained in the homogeneous case $\ell(r) = r^{-s}$ where $s>d$.
Fichier principal
Vignette du fichier
BouRaj-Arxiv.pdf (437.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04257842 , version 1 (25-10-2023)

Licence

Identifiants

  • HAL Id : hal-04257842 , version 1

Citer

Guy Bouchitté, Rajesh Mahadevan. Mean field theory for a general class of short-range interaction functionals. 2023. ⟨hal-04257842⟩

Collections

UNIV-TLN IMATH
105 Consultations
49 Téléchargements

Partager

More