Mean field theory for a general class of short-range interaction functionals
Résumé
In models of $N$ interacting particles in $\R^d$ as in Density Functional Theory or crowd motion, the repulsive cost is usually described by a two-point function $c_\e(x,y) =\ell\Big(\frac{|x-y|}{\e}\Big)$ where $\ell: \R_+ \to [0,\infty]$ is decreasing to zero at infinity and parameter $\e>0$ scales the interaction distance. In this paper we identify the mean-field energy of such a model in the short-range regime $\e\ll 1$ under the sole assumption that $\exists r_0>0 \ : \ \int_{r_0}^\infty \ell(r) r^{d-1}\, dr <+\infty$. This extends recent results \cite{hardin2021, HardSerfLebl, Lewin} obtained in the homogeneous case $\ell(r) = r^{-s}$ where $s>d$.
Mots clés
empirical measures
non-local functionals
$\Gamma$-convergence
mean-field energy
sub-additivity
empirical measures non-local functionals Γ-convergence mean-field energy sub-additivity Mathematics Subject Classification: 49J45 49K21 49N15 60B10 70-10 82B21
Γ-convergence
sub-additivity Mathematics Subject Classification: 49J45
49K21
49N15
60B10
70-10
82B21
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |